scholarly journals Spatiotemporal Analysis of Soil Moisture Variation in the Jiangsu Water Supply Area of the South-to-North Water Diversion Using ESA CCI Data

Author(s):  
Yue Wang ◽  
Jianjun Cao ◽  
Yongjuan Liu ◽  
Ying Zhu ◽  
xuan Fang ◽  
...  

The South-to-North Water Transfer Jiangsu Water Supply Area (JWSA) is a mega inter-basin water transfer area (water source) that provides water resources from JiangHuai, combines drainage and flooding management, and regulates nearby rivers and lakes. Analyzing the spatiotemporal soil moisture dynamics in the area will inform agricultural drought and flood disaster assessment and early warning studies. Therefore, we evaluated the quality of European Space Agency Climate Change Initiative Soil moisture (ESA CCI_SM) data in the South-North Water Transfer JWSA. Then, we used ensemble empirical modal decomposition, Mann-Kendall tests, and regression analysis to study the spatiotemporal variation in soil moisture for the past 29 years. The CCI _SM data showed a high correlation with local soil measurements at nine sites. We then analyzed the CCI_SM data from three pumping stations (the Gaogang, Hongze, and Liushan stations) in the South-North Water Transfer JWSA. These stations had similar periodic characteristics of soil moisture, with significant periodic fluctuations around 3.1 d. The overall soil moisture at the three typical pumping stations showed an increasing trend. We then investigated whether there were abrupt soil moisture changes at each station. The spatial distribution of soil moisture in the South-North Water Transfer JWSA was characterized by “dry north and wet south”, with higher soil moisture in winter, followed by autumn, and low soil moisture in spring and summer. Although the linear trend of soil moisture in the South-North Water Transfer JWSA varied in significance, the overall soil moisture in the JWSA has increased over the past 29 years. The areas with significantly enhanced soil moisture are mainly distributed in the Yangzhou and Huai'an areas in the southeastern part of the study area. The areas with significantly decreased soil moisture are small in size and mainly located in northern Xuzhou.

2022 ◽  
Vol 14 (2) ◽  
pp. 256
Author(s):  
Yue Wang ◽  
Jianjun Cao ◽  
Yongjuan Liu ◽  
Ying Zhu ◽  
Xuan Fang ◽  
...  

The South-to-North Water Transfer Jiangsu Water Supply Area (JWSA) is a mega inter-basin water transfer area (water source) that provides water resources from JiangHuai, combines drainage and flooding management, and regulates nearby rivers and lakes. Analyzing the spatiotemporal soil moisture dynamics in the area will be informative regarding agricultural drought along with flood disaster assessment and will provide early warning studies. Therefore, we evaluated the quality of European Space Agency Climate Change Initiative Soil Moisture (ESA CCI_SM) data in the South-North Water Transfer JWSA. Furthermore, we utilized ensemble empirical modal decomposition, Mann-Kendall tests, and regression analysis to study the spatiotemporal variation in soil moisture for the past 29 years. The CCI _SM data displayed a high correlation with local soil measurements at nine sites. We next analyzed the CCI_SM data from three pumping stations (the Gaogang, Hongze, and Liushan stations) in the South-North Water Transfer JWSA. These stations had similar periodic characteristics of soil moisture, with significant periodic fluctuations around 3.1 d. The overall soil moisture at the three typical pumping stations demonstrated an increasing trend. We further investigated whether abrupt soil moisture changes existed at each station or not. The spatial distribution of soil moisture in the South-North Water Transfer JWSA was characterized as “dry north and wet south”, with higher soil moisture in winter, followed by autumn, and low soil moisture in spring and summer. Although the linear trend of soil moisture in the South-North Water Transfer JWSA varied in significance, the overall soil moisture in the JWSA has increased over the past 29 years. The areas with significantly enhanced soil moisture are mostly distributed in the Yangzhou and Huai’an areas in the southeastern part of the study area. The areas with significantly decreased soil moisture are small in size and mostly located in northern Xuzhou.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 796
Author(s):  
Meijing Chen ◽  
Zhongke Bai ◽  
Qingri Wang ◽  
Zeyu Shi

Accelerating urbanization and industrialization have had substantial impacts on economic and social activities, changed the surface environment of the earth, and affected global climate change and biodiversity. If reasonable and effective management measures are not implemented in time, unchecked urbanization and industrialization will damage the structure and function of the ecosystem, endanger human and biological habitats, and ultimately lead to difficulties in achieving sustainable development. This study investigates the habitat quality effect of land use transition and analyzes the cause and mechanism of such changes from an economic–social–ecological complex system perspective in the Henan Water Source (HWS) area of the Middle Route of the South-to-North Water Transfer Project (MRP). The study comprehensively examines the characteristics of land use transition from 2000 to 2020. The results indicate that the habitat quality of the HWS area of the MRP decreased slowly over the past 20 years, with a more obvious decrease in the past 10 years. Specifically, the proportion of high quality habitat areas is relatively large and stable, and the medium and low quality habitat areas increase significantly. Analyzing the change degree of the proportion of different levels of habitat quality area in each county, revealed that Dengzhou City had the most dramatic change, followed by the Xichuan and Neixiang counties; other counties did not undergo obvious change. The results of habitat quality factor detection by GeoDetector showed that land use transition plays a decisive role in the change of habitat quality. The types of land use with high habitat suitability compared to those with low habitat suitability will inevitably lead to a decrease in habitat quality. Additionally, elevation, slope, landform type, and annual precipitation are important factors affecting the habitat quality in the HWS area of the MRP, indicating that ecological factors determine the background conditions of habitat quality. The gross domestic product (GDP) per capita, the proportion of agricultural output value, grain yield per unit area in economic factors, population density, and urbanization rate in social factors affect the spatial differentiation of habitat quality to a certain extent. Soil type, annual mean temperature, vegetation type, and NDVI index have weak effects on habitat quality, while road network density and slope aspect have no significant effect on habitat quality. The results of this study provide a basis for the improvement of habitat quality, ecosystem protection and restoration, land resource management, and related policies in the HWS area of the MRP. They also provide references for the research and practice of the habitat quality effects of land use transition in other regions.


2005 ◽  
Vol 32 (1) ◽  
pp. 159-163 ◽  
Author(s):  
Duan Wei

Beijing is located in a semiarid region, and water shortage is a common problem in the city. Along with the rapid increase in water demand, due to fast socioeconomic development and an increase in population, a shortage of water resources and a deterioration of the water environment have become obstacles to sustainable socioeconomic development in Beijing. In the long run, sustainable water resources management, water conservation, and completion of the south to north water diversion project will solve the problem. This paper introduces the water resources situation in Beijing; analyzes future water demand; and discusses the actions of water saving, nontraditional water resources exploitation, wetland construction, and water environment protection. The paper also explains the importance of the south to north water diversion project and the general layout of the water supply strategy, water distribution system, and methods to efficiently use the diverted water in Beijing.Key words: water resources, water supply, water saving, water recycling, water diversion.


2018 ◽  
Vol 10 (8) ◽  
pp. 1302 ◽  
Author(s):  
Jueying Bai ◽  
Qian Cui ◽  
Deqing Chen ◽  
Haiwei Yu ◽  
Xudong Mao ◽  
...  

China is frequently subjected to local and regional drought disasters, and thus, drought monitoring is vital. Drought assessments based on available surface soil moisture (SM) can account for soil water deficit directly. Microwave remote sensing techniques enable the estimation of global SM with a high temporal resolution. At present, the evaluation of Soil Moisture Active Passive (SMAP) SM products is inadequate, and L-band microwave data have not been applied to agricultural drought monitoring throughout China. In this study, first, we provide a pivotal evaluation of the SMAP L3 radiometer-derived SM product using in situ observation data throughout China, to assist in subsequent drought assessment, and then the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) is compared with the atmospheric water deficit (AWD) and vegetation health index (VHI). It is found that the SMAP can obtain SM with relatively high accuracy and the SWDI-SMAP has a good overall performance on drought monitoring. Relatively good performance of SWDI-SMAP is shown, except in some mountain regions; the SWDI-SMAP generally performs better in the north than in the south for less dry bias, although better performance of SMAP SM based on the R is shown in the south than in the north; differences between the SWDI-SMAP and VHI are mainly shown in areas without vegetation or those containing drought-resistant plants. In summary, the SWDI-SMAP shows great application potential in drought monitoring.


Author(s):  
Yu Yao ◽  
Peifang Wang ◽  
Chao Wang

The world famous South-to-North Water Transfer Project was built to alleviate serious water shortages in northern China. Considering that lake Hongze is an important freshwater lake in this region, analyzing the influence of water diversion on typical contaminant bioavailability and microbial abundance could aid in achieving a good overall understanding of hydrodynamic variation. Accordingly, in situ high-resolution measurements of diffusive gradients in thin films (DGT) and next-generation high-throughput sequencing were combined in order to survey Lake Hongze and determine the relationship between environmental factors and microbial communities. The DGT method effectively obtained more than the 85% of bioavailable concentrations of the corresponding contaminants; the results showed that labile P, S, Fe, As, and Hg concentrations were higher in areas influenced by water transfer. Moreover, the relative abundance and alpha diversity of the sampling sites distributed in the water transfer area differed significantly from other sites. The pH, conductivity, and labile Mn, As, and P were shown to be the primary environmental factors affecting the abundance and diversity of microbes. With the exception of bioturbation-affected sites controlled by labile Mn and pH, sites distributed in the water diversion area were most affected by As and conductivity, with little spatial discrepancy. Furthermore, site 2, with higher bioturbation abundance, and site 10, with stronger hydrodynamics, had low alpha diversity compared to the other sites. Consequently, the bioavailability of typical contaminants such as P, S, As, Hg, Fe, Mg, Cd, Pb, and Mn, as well as the diversity and abundance of microbial in the sites influenced by the water diversion, were significantly different to the other sites. Thus, the impacts of the South-to-North Water Transfer Project on participant lakes were non-negligible overall in the investigation.


2014 ◽  
Vol 919-921 ◽  
pp. 1248-1251
Author(s):  
Xiao Cheng Su ◽  
Zhi Liu ◽  
Xiao Yun Wang

The South-to-North Water Transfer Project is a cross century water diversion project. So it is very important to ensure its normal operation. The hydraulic calculation of Jiping Canal of the South-to-North Water Transfer Project is carried out in this paper, working out cross section, the profile and the X-Y-Z perspective plot of Jiping Canal respectively. An analysis of the canal stability enables us to get the condition in which the canal is stable, which will provide strong technical support for the design and construction of the canal. Therefore, the analysis has important practical significance. The study will be effective guidance on the normal operation of Jiping Canal of South-to-North Water Transfer Project.


Sign in / Sign up

Export Citation Format

Share Document