scholarly journals Formation of Benign Tumours by Stem Cell Misregulation

Author(s):  
Matthieu Valet ◽  
Patrick Narbonne

Our tissues usually have just the right number of cells to optimally fulfil their function. Not enough cells within a tissue can lead to dysfunction, while too many cells result in a tumour. Yet, how this homeostatic balance is maintained remains poorly defined. Most differentiated cells within tissues have a finite lifespan and need to be replaced at a corresponding pace to maintain tissue homeostasis. These new differentiated cells are generated by proliferation of the stem/progenitor cells that serve the tissue. Work in simple invertebrates clearly suggests stem cells respond to at least two types of signals: niche signaling and growth factors. Niche signals promote the undifferentiated state by preventing differentiation, and thus allow for stem cell self-renewal. Growth factor sources comprise a systemic input reflecting the animal’s nutritional status, and a localized, homeostatic feedback from the tissue that the stem cells serve. That homeostatic signal couples stem cell proliferation rates to the tissue’s need for new differentiated cells. Evidence from simple organisms suggests two types of benign tumours can arise from deregulation of either niche or homeostatic signaling. Namely, constitutive niche signaling promotes the formation of undifferentiated “stem cell” tumours, while defective homeostatic signaling leads to the formation of differentiated tumours. We propose that these principles may be conserved and underlie benign tumour formation in humans, while benign tumours can evolve into cancer.

2020 ◽  
Author(s):  
Wenxiu Ning ◽  
Andrew Muroyama ◽  
Hua Li ◽  
Terry Lechler

AbstractBasal stem cells fuel development, homeostasis, and regeneration of the epidermis. The proliferation and fate decisions of these cells are highly regulated by their microenvironment, including the basement membrane and underlying mesenchymal cells. Basal progenitors give rise to differentiated progeny that serve an essential role in generating the epidermal barrier. Here, we present data that differentiated progeny also regulate the proliferation, differentiation, and migration of basal progenitor cells. Using two distinct mouse lines, we found that increasing contractility of differentiated cells resulted in non-cell autonomous hyperproliferation of stem cells and prevented their commitment to a hair follicle lineage. These phenotypes were rescued by pharmacological inhibitors of contractility. Live-imaging revealed that increasing the contractility of differentiated cells resulted in stabilization of adherens junctions and impaired movement of basal progenitors during hair placode morphogenesis, as well as a defect in migration of melanoblasts. These data suggest that intra-tissue tension regulates stem cell proliferation, fate decisions and migration, similar to the known roles of extracellular matrix rigidity. Additionally, this work demonstrates that differentiated epidermal keratinocytes are a component of the stem cell niche that regulates development and homeostasis of the skin.


2014 ◽  
Vol 34 (4) ◽  
Author(s):  
Song Li ◽  
Hongyan Wang ◽  
Casper Groth

Drosophila larval brain stem cells (neuroblasts) have emerged as an important model for the study of stem cell asymmetric division and the mechanisms underlying the transformation of neural stem cells into tumour-forming cancer stem cells. Each Drosophila neuroblast divides asymmetrically to produce a larger daughter cell that retains neuroblast identity, and a smaller daughter cell that is committed to undergo differentiation. Neuroblast self-renewal and differentiation are tightly controlled by a set of intrinsic factors that regulate ACD (asymmetric cell division). Any disruption of these two processes may deleteriously affect the delicate balance between neuroblast self-renewal and progenitor cell fate specification and differentiation, causing neuroblast overgrowth and ultimately lead to tumour formation in the fly. In this review, we discuss the mechanisms underlying Drosophila neural stem cell self-renewal and differentiation. Furthermore, we highlight emerging evidence in support of the notion that defects in ACD in mammalian systems, which may play significant roles in the series of pathogenic events leading to the development of brain cancers.


2019 ◽  
Vol 14 (5) ◽  
pp. 428-436 ◽  
Author(s):  
Gabriele D. Bigoni-Ordóñez ◽  
Daniel Czarnowski ◽  
Tyler Parsons ◽  
Gerard J. Madlambayan ◽  
Luis G. Villa-Diaz

Cancer is a highly prevalent and potentially terminal disease that affects millions of individuals worldwide. Here, we review the literature exploring the intricacies of stem cells bearing tumorigenic characteristics and collect evidence demonstrating the importance of integrin α6 (ITGA6, also known as CD49f) in cancer stem cell (CSC) activity. ITGA6 is commonly used to identify CSC populations in various tissues and plays an important role sustaining the self-renewal of CSCs by interconnecting them with the tumorigenic microenvironment.


2020 ◽  
Vol 15 (6) ◽  
pp. 531-546 ◽  
Author(s):  
Hwa-Yong Lee ◽  
In-Sun Hong

Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.


Author(s):  
Nese Unver

: Cancer stem cells represent a rare subpopulation of cancer cells carrying self-renewal and differentiation features in the multi-step tumorigenesis, tumor recurrence and metastasis. Pro-inflammatory stress is highly associated with cancer stemness via induction of cytokines, tumor-promoting immune cells and cancer stemness-related signaling pathways. This review summarizes the major pro-inflammatory factors affecting cancer stem cell characteristics and the critical immunotherapeutic strategies to eliminate cancer stem cells.


2012 ◽  
Vol 2 (1) ◽  
pp. 11-21
Author(s):  
Silvia Cristini ◽  
Giulio Alessandri ◽  
Francesco Acerbi ◽  
Daniela Tavian ◽  
Eugenio A. Parati ◽  
...  

2012 ◽  
Vol 2 (1) ◽  
pp. 11-21
Author(s):  
Silvia Cristini ◽  
Giulio Alessandri ◽  
Francesco Acerbi ◽  
Daniela Tavian ◽  
Eugenio A. Parati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document