scholarly journals Modeling of Natural Lighting Parameters in the Open Air with Intermeradiandiate Luminance Distribution

Author(s):  
Evgeniy Konopatskiy ◽  
Vladimir Yehorchenkov ◽  
Andrey Bezditnyi

When simulating outdoor natural lighting, a spherical sky model is used. This is true in a clear sky, but in the presence of clouds, this model does not correspond to reality. This paper presents the substantiation of the sky model in the form of a spherical segment with a standard distribution of the luminance of the semi-clear (intermediate) sky. Moreover, instead of the ratio of illumination, under given cloudiness conditions to illumination with ideal transparency of the atmosphere, which are usually used in European standards, the direct value of cloudiness is used here, taken from the results of long-term observations at meteorological stations. To modeling the parameters of outdoor natural lighting, a more effective and simple mathematical apparatus of point calculus is used, with the help of which a point set of a spherical segment is formed. On the basis of this set, a field of elementary pyramids is created. For each pyramid, using well-known formulas, elementary values of the parameters of natural lighting are determined.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Christopher C. M. Kyba ◽  
Kai Pong Tong ◽  
Jonathan Bennie ◽  
Ignacio Birriel ◽  
Jennifer J. Birriel ◽  
...  

Abstract Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program.


2016 ◽  
Author(s):  
Lubna Dada ◽  
Pauli Paasonen ◽  
Tuomo Nieminen ◽  
Stephany Buenrostro Mazon ◽  
Jenni Kontkanen ◽  
...  

Abstract. New particle formation (NPF) events have been observed all around the world and are known to be a major source of atmospheric aerosol particles. Here we combine 20 years of observations in a boreal forest at the SMEAR II station (Station for Measuring Ecosystem-Atmosphere Relations) in Hyytiälä, Finland, by utilizing previously accumulated knowledge, and by focusing on clear-sky (non-cloudy) conditions. We first investigated the effect of cloudiness on NPF and then compared the NPF event and non-event days during clear-sky conditions. In this comparison we considered, for example, the effects of calculated particle formation rates, condensation sink, trace gas concentrations and various meteorological quantities. The formation rate of 1.5 nm particles was calculated by using proxies for gaseous sulfuric acid and oxidized products of low volatile organic compounds. As expected, our results indicate an increase in the frequency of NPF events under clear-sky conditions. Also, focusing on clearsky conditions enabled us to find a clear separation of many variables related to NPF. For instance, oxidized organic vapors showed higher concentration during the clear-sky NPF event days, whereas the condensation sink (CS) and some trace gases had higher concentrations during the non-event days. The calculated formation rate of 3 nm particles showed a notable difference between the NPF event and non-event days during clear-sky conditions, especially in winter and spring. For spring time, we are able to find a threshold value for the combined values of ambient temperature and CS, above which practically no clear-sky NPF event could be observed. Finally, we present a probability distribution for the frequency of NPF events at a specific CS and temperature.


2021 ◽  
Vol 101 (1) ◽  
pp. 209-218
Author(s):  
Anastasia Salavatova ◽  

The concept of the EU normative power implies transformation challenges which project norms on the national level of European periphery. The research aims to assess extent the EU requirements contradict the Macedonian national identity and determine changes that either are perceived as imposed or reflect implicit European norms. Depending on the level of the EU engagement europeanization of national identity takes different forms ranging from institutional changes with the European mediators’ assistance (conflict settlement, the name issue) to the search of alternative national legitimation models apart from socialist Yugoslavia. Conditionality of explicit requirements that refer to disputes with neighbouring countries is integrated into national narrative in the form of sacrifice, which still is perceived as external pressure. Implicit norms like decommunization are more difficult to identify but imply a long-term deconstruction of national identity. Such deconstruction could provide not just prospects for the future of the Macedonian nation and state but allows to select and describe implicit European norms that are disseminated into the periphery. The article outlines conditionality between European standards and requirements and transformations in basic principles of Macedonian national identity.


2019 ◽  
Vol 32 (6) ◽  
pp. 1973-1994 ◽  
Author(s):  
Laura M. Hinkelman

The representation of the long-term radiative energy budgets in NASA’s MERRA and MERRA-2 reanalyses has been evaluated, emphasizing changes associated with the reanalysis system update. Data from the CERES EBAF Edition 2.8 satellite product over 2001–15 were used as a reference. For both MERRA and MERRA-2, the climatological global means of most TOA radiative flux terms agree to within ~3 W m−2 of EBAF. However, MERRA-2’s all-sky reflected shortwave flux is ~7 W m−2 higher than either MERRA or EBAF’s, resulting in a net TOA flux imbalance of −4 W m−2. At the surface, all-sky downward longwave fluxes are problematic for both reanalyses, while high clear-sky downward shortwave fluxes indicate that their atmospheres are too transmissive. Although MERRA-2’s individual all-sky flux terms agree better with EBAF, its net flux agreement is worse (−8.3 vs −3.3 W m−2 for MERRA) because MERRA benefits from cancellation of errors. Analysis by region and surface type gives mixed outcomes. The results consistently indicate that clouds are overrepresented over the tropical oceans in both reanalyses, particularly MERRA-2, and somewhat underrepresented in marine stratocumulus areas. MERRA-2 also exhibits signs of excess cloudiness in the Southern Ocean. Notable discrepancies occur in the polar regions, where the effects of snow and ice cover are important. In most cases, MERRA-2 better represents variability and trends in the global mean radiative fluxes over the period of analysis. Overall, the performance of MERRA-2 relative to MERRA is mixed; there is still room for improvement in the radiative fluxes in this family of reanalysis products.


2019 ◽  
Vol 76 (11) ◽  
pp. 3485-3504 ◽  
Author(s):  
Carsten Abraham ◽  
Adam H. Monahan

Abstract In a companion paper hidden Markov model (HMM) analyses have been conducted to classify the nocturnal stably stratified boundary layer (SBL) into weakly stable (wSBL) and very stable (vSBL) conditions at different tower sites on the basis of long-term Reynolds-averaged mean data. The resulting HMM regime sequences allow analysis of long-term (climatological) SBL regime statistics. In particular, statistical features of very persistent wSBL and vSBL nights, in which a single regime lasts for the entire night, are contrasted with those of nights with SBL regime transitions. The occurrence of very persistent nights is seasonally dependent and more likely in homogeneous surroundings than in regions with complex terrain. When transitions occur, their timing is not seasonally dependent, but transitions are enhanced close to sunset (for land-based sites). The regime event durations depict remarkably similar distributions across all stations with peaks in transition likelihood approximately 1–2 h after a preceding transition. At Cabauw in the Netherlands, very persistent wSBL and vSBL nights are usually accompanied by overcast conditions with strong geostrophic winds Ugeo or clear-sky conditions with weak Ugeo, respectively. In contrast, SBL regime transitions can neither be linked to magnitudes in Ugeo and cloud coverage nor to specific tendencies in Ugeo. However, regime transitions can be initiated by changes in low-level cloud cover.


2018 ◽  
Vol 10 (10) ◽  
pp. 1651 ◽  
Author(s):  
Bikhtiyar Ameen ◽  
Heiko Balzter ◽  
Claire Jarvis ◽  
Etienne Wey ◽  
Claire Thomas ◽  
...  

Several sectors need global horizontal irradiance (GHI) data for various purposes. However, the availability of a long-term time series of high quality in situ GHI measurements is limited. Therefore, several studies have tried to estimate GHI by re-analysing climate data or satellite images. Validation is essential for the later use of GHI data in the regions with a scarcity of ground-recorded data. This study contributes to previous studies that have been carried out in the past to validate HelioClim-3 version 5 (HC3v5) and the Copernicus Atmosphere Monitoring Service, using radiation service version 3 (CRSv3) data of hourly GHI from satellite-derived datasets (SDD) with nine ground stations in northeast Iraq, which have not been used previously. The validation is carried out with station data at the pixel locations and two other data points in the vicinity of each station, which is something that is rarely seen in the literature. The temporal and spatial trends of the ground data are well captured by the two SDDs. Correlation ranges from 0.94 to 0.97 in all-sky and clear-sky conditions in most cases, while for cloudy-sky conditions, it is between 0.51–0.72 and 0.82–0.89 for the clearness index. The bias is negative for most of the cases, except for three positive cases. It ranges from −7% to 4%, and −8% to 3% for the all-sky and clear-sky conditions, respectively. For cloudy-sky conditions, the bias is positive, and differs from one station to another, from 16% to 85%. The root mean square error (RMSE) ranges between 12–20% and 8–12% for all-sky and clear-sky conditions, respectively. In contrast, the RMSE range is significantly higher in cloudy-sky conditions: above 56%. The bias and RMSE for the clearness index are nearly the same as those for the GHI for all-sky conditions. The spatial variability of hourly GHI SDD differs only by 2%, depending on the station location compared to the data points around each station. The variability of two SDDs is quite similar to the ground data, based on the mean and standard deviation of hourly GHI in a month. Having station data at different timescales and the small number of stations with GHI records in the region are the main limitations of this analysis.


2008 ◽  
Vol 8 (23) ◽  
pp. 7033-7043 ◽  
Author(s):  
S. Simic ◽  
P. Weihs ◽  
A. Vacek ◽  
H. Kromp-Kolb ◽  
M. Fitzka

Abstract. The influence of variability of atmospheric parameters on short- and long-term changes of spectral UV irradiance measured at the Sonnblick observatory (47.03° N, 12.57° E, 3106 m) during the period from 1994 to 2006 is studied. Measurements were performed with the Brewer #093 single-monochromator spectrophotometer and with a Bentham DM 150 spectroradiometer (double-monochromator). The influence of ozone, albedo, snowline and clouds on UV variability is evaluated for each parameter separately using 10-year climatology. It is found that the effect of total ozone on short-term variability of UV irradiance at 305 nm can be more than 200% and on average more than 50%. Clouds can cause variability of 150% or more and on average 35%. Variability caused by albedo reaches a maximum of 32% in April (6% on average). In summer and autumn, total ozone and clouds strongly influence the variability of UV radiation, whereas in winter and spring ozone has the more pronounced effect. A decrease in snowline height from 3000 m to 800 m a.s.l. enhances the UV irradiance by a factor of 1.24 for clear sky conditions and by a factor of 1.7 for 8/8 cloud cover. Long-term trends are investigated for the time period from 1994 to 2006 based on clear-sky measurements, using the non-parametric Mann-Kendall trend test. Significant downward trends (99% confidence level) are found for solar zenith angle 55° at wavelengths from 305 nm to 324 nm and erythemally weighted irradiance according to CIE, which are caused by an increase in sunshine duration during periods of high total column ozone. Significant trends (90% confidence level) were also found for other combinations of wavelength and SZA.


2013 ◽  
Vol 31 (5) ◽  
pp. 795-804 ◽  
Author(s):  
X. Xia

Abstract. This study aims to investigate the effect of total cloud cover (TCC) and sunshine duration (SSD) in the variation of diurnal temperature range (DTR) in China during 1954–2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30-year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954–2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30–60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China.


Sign in / Sign up

Export Citation Format

Share Document