scholarly journals Integrating Traditional Machine Learning and Neural Networks for Image Processing

Author(s):  
Nikita Laptev ◽  
Vladislav Laptev ◽  
Olga Gerget ◽  
Dmitriy Kolpashchikov

The article describes a feasibility study to assess the use of neural networks and traditional machine learning algorithms to solve various problems including image processing. A brief description of some algorithms of traditional machine learning, as well as anautomated service for choosing the best method for a specific task, is given. The authors also describe the features of artificial neural networks and the most popular places for theirapplication. An algorithm for solving the problem of detecting fire hazardous objects andlocalizing a fire source in a forest using video sequence frames is presented. The article compares the characteristics of artificial neural network models according to the followingcriteria: underlying architecture, the number of analyzed frames, the size of the input image, the transfer learning model used as a feature vector composing network. Acomparative analysis of traditional machine learning algorithms and neural networks withlong short-term memory in the problem of classification of forest fire hazards is made. A solution to localization of the source of fire based on clustering is described. A hybrid algorithm for finding a fire source in a forest is developed and illustrated.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 523
Author(s):  
Kristin Majetta ◽  
Christoph Clauß ◽  
Christoph Nytsch-Geusen

This paper describes a way to generate a great amount of data and to use it to find a relation between a room controller and a certain room. Therefore, simulation scenarios are defined and developed that contain different room, location, usage and controller models. With parameter variation and optimization of the corresponding controller parameters a data basis is created with about 5300 entries. On the basis of this data, machine learning algorithms like artificial neural networks can be used to investigate the relation between rooms and their best suited controllers.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1305
Author(s):  
Arthur H. Essenfelder ◽  
Francesca Larosa ◽  
Paolo Mazzoli ◽  
Stefano Bagli ◽  
Davide Broccoli ◽  
...  

This study proposes a climate service named Smart Climate Hydropower Tool (SCHT) and designed as a hybrid forecast system for supporting decision-making in a context of hydropower production. SCHT is technically designed to make use of information from state-of-art seasonal forecasts provided by the Copernicus Climate Data Store (CDS) combined with a range of different machine learning algorithms to perform the seasonal forecast of the accumulated inflow discharges to the reservoir of hydropower plants. The machine learning algorithms considered include support vector regression, Gaussian processes, long short-term memory, non-linear autoregressive neural networks with exogenous inputs, and a deep-learning neural networks model. Each machine learning model is trained over past decades datasets of recorded data, and forecast performances are validated and evaluated using separate test sets with reference to the historical average of discharge values and simpler multiparametric regressions. Final results are presented to the users through a user-friendly web interface developed from a tied connection with end-users in an effective co-design process. Methods are tested for forecasting the accumulated seasonal river discharges up to six months in advance for two catchments in Colombia, South America. Results indicate that the machine learning algorithms that make use of a complex and/or recurrent architecture can better simulate the temporal dynamic behaviour of the accumulated river discharge inflow to both case study reservoirs, thus rendering SCHT a useful tool in providing information for water resource managers in better planning the allocation of water resources for different users and for hydropower plant managers when negotiating power purchase contracts in competitive energy markets.


2021 ◽  
Vol 7 ◽  
pp. e645
Author(s):  
Ramish Jamil ◽  
Imran Ashraf ◽  
Furqan Rustam ◽  
Eysha Saad ◽  
Arif Mehmood ◽  
...  

Sarcasm emerges as a common phenomenon across social networking sites because people express their negative thoughts, hatred and opinions using positive vocabulary which makes it a challenging task to detect sarcasm. Although various studies have investigated the sarcasm detection on baseline datasets, this work is the first to detect sarcasm from a multi-domain dataset that is constructed by combining Twitter and News Headlines datasets. This study proposes a hybrid approach where the convolutional neural networks (CNN) are used for feature extraction while the long short-term memory (LSTM) is trained and tested on those features. For performance analysis, several machine learning algorithms such as random forest, support vector classifier, extra tree classifier and decision tree are used. The performance of both the proposed model and machine learning algorithms is analyzed using the term frequency-inverse document frequency, bag of words approach, and global vectors for word representations. Experimental results indicate that the proposed model surpasses the performance of the traditional machine learning algorithms with an accuracy of 91.60%. Several state-of-the-art approaches for sarcasm detection are compared with the proposed model and results suggest that the proposed model outperforms these approaches concerning the precision, recall and F1 scores. The proposed model is accurate, robust, and performs sarcasm detection on a multi-domain dataset.


Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2927
Author(s):  
Jiyeong Hong ◽  
Seoro Lee ◽  
Joo Hyun Bae ◽  
Jimin Lee ◽  
Woon Ji Park ◽  
...  

Predicting dam inflow is necessary for effective water management. This study created machine learning algorithms to predict the amount of inflow into the Soyang River Dam in South Korea, using weather and dam inflow data for 40 years. A total of six algorithms were used, as follows: decision tree (DT), multilayer perceptron (MLP), random forest (RF), gradient boosting (GB), recurrent neural network–long short-term memory (RNN–LSTM), and convolutional neural network–LSTM (CNN–LSTM). Among these models, the multilayer perceptron model showed the best results in predicting dam inflow, with the Nash–Sutcliffe efficiency (NSE) value of 0.812, root mean squared errors (RMSE) of 77.218 m3/s, mean absolute error (MAE) of 29.034 m3/s, correlation coefficient (R) of 0.924, and determination coefficient (R2) of 0.817. However, when the amount of dam inflow is below 100 m3/s, the ensemble models (random forest and gradient boosting models) performed better than MLP for the prediction of dam inflow. Therefore, two combined machine learning (CombML) models (RF_MLP and GB_MLP) were developed for the prediction of the dam inflow using the ensemble methods (RF and GB) at precipitation below 16 mm, and the MLP at precipitation above 16 mm. The precipitation of 16 mm is the average daily precipitation at the inflow of 100 m3/s or more. The results show the accuracy verification results of NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, and R2 0.859 in RF_MLP, and NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, and R2 0.831 in GB_MLP, which infers that the combination of the models predicts the dam inflow the most accurately. CombML algorithms showed that it is possible to predict inflow through inflow learning, considering flow characteristics such as flow regimes, by combining several machine learning algorithms.


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 98 ◽  
Author(s):  
Tariq Ahmad ◽  
Allan Ramsay ◽  
Hanady Ahmed

Assigning sentiment labels to documents is, at first sight, a standard multi-label classification task. Many approaches have been used for this task, but the current state-of-the-art solutions use deep neural networks (DNNs). As such, it seems likely that standard machine learning algorithms, such as these, will provide an effective approach. We describe an alternative approach, involving the use of probabilities to construct a weighted lexicon of sentiment terms, then modifying the lexicon and calculating optimal thresholds for each class. We show that this approach outperforms the use of DNNs and other standard algorithms. We believe that DNNs are not a universal panacea and that paying attention to the nature of the data that you are trying to learn from can be more important than trying out ever more powerful general purpose machine learning algorithms.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sho Nakagome ◽  
Trieu Phat Luu ◽  
Yongtian He ◽  
Akshay Sujatha Ravindran ◽  
Jose L. Contreras-Vidal

Sign in / Sign up

Export Citation Format

Share Document