scholarly journals Follicular Development of Aged Rats Ovarian Injected Human Umbilical Cord Mesenchymal Stem Cells

Author(s):  
Resti Rahma Dianti ◽  
Alif Iman Fitrianto ◽  
Adkhilni Utami ◽  
Wining Astini ◽  
Adisti Dwijayanti ◽  
...  

Female reproductive system showing the fastest signs of aging. The ovarian aging characterized by a decrease in follicular development. Stem cells are undifferentiated cells and can form a variety of different cells as the foundation of tissues and organs. Previous studies reported that Bone Marrow Mesenchymal Stem Cells (BM-MSCs) transplantation can restore follicular development in damaged ovarian rats. This study aimed to analyze the number of follicular development in aged rats and to analyze the capability of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSCs) to improving follicular development in aged rats. This study used 3 mature rats (4 months old), and 9 nine aged rats (22-24 months old), Spraque Dawley (SD) strain. They were divided into four groups. The first and the second group was mature rats and aged rats without injection. The third and the fourth group was aged rats injected hUC-MSCs dose 106 cells/kgBW and hUC-MSCs dose 107 cells/kgBW. The injection carried out 4 times at 3-month intervals. The parameters observed were follicular development and homing image of hUC-MSCs in ovarian tissue. The results showed that the number of follicular developments in aged rats 22-24 months decreased significantly compared to mature rats 4 months old. Injection of hUC-MSCs at dose 106 cells/kgBW and 107 cells/kgBW did not increase follicular development in aged rats. hUC-MSCs did not found in ovarian tissue. It could be concluded that aged rats 22-24 months old no longer productive indicated from the number of follicular developments and corpus luteum decreased. The injection of hUC-MSCs intravenously did not indicate an improvement of follicular development in aged rats 22-24 months old.

2020 ◽  
Author(s):  
Xiaodan Lv ◽  
Chunyi Guan ◽  
Ying Li ◽  
Xing Su ◽  
lu Zhang ◽  
...  

Abstract Background: Previous studies have reported that transplantation of mesenchymal stem cells (MSCs) from many human tissues can improve ovarian dysfunction. However, the therapeutic effects of single injection of MSCs and multiple injections of MSCs on premature ovarian failure (POF) have not been reported yet. In this study, we used long-term follow-up to study the effect of human umbilical cord mesenchymal stem cell (hUC-MSCs) on the functional recovery of mouse POF models. Methods: In this study, we used a mouse model of premature ovarian failure induced by the combination of 120mg/kg cyclophosphamide and 30mg/kg busulfan. Enzyme-linked immunosorbent assay (ELISA) was used to detect estradiol (E2) and follicle stimulating hormone (FSH) levels in mouse serum. Evaluate ovarian function by counting follicles, ovarian weight, number of proliferating cells, anti-Mullerian hormone (AMH) and oocytes. Results: Our study shows that hUC-MSCs have obvious therapeutic effect for the POF mice model, and treatment effect of multiple transplantation is better than single transplantation. Mesenchymal stem cells were detected in follicular granulosa cells with tracer of the ovarian tissue freezing slice, which show hUC-MSCs to selectively migration and stay in damaged tissues. Genome Array screened a number of differentially expressed genes, the hUC-MSCs can change the level of expression of certain genes in the ovarian tissue, thus affecting ovarian function, and laid the foundation for us to further explore the mechanism of hUC-MSCs treatment of premature ovarian failure. Conclusion: This study demonstrated that hUC-MSCs transplantation significantly restored ovarian function after chemotherapy-induced damage.


Sign in / Sign up

Export Citation Format

Share Document