Special Issue on Measurement and Control in Machine Tools and Machining Process

2009 ◽  
Vol 3 (4) ◽  
pp. 377-377
Author(s):  
Atsushi Matsubara ◽  

Manufacturing fields in high-income countries have tended to pursue high quality and high productivity together. In conventional machining, however, machine tools, cutting tools, machining process, and measurement technologies have progressed individually rather than together -- mainly due to the production industry configuration. With society’s needs growing and diversifying, however, development approach that combines distinct technologies without integration no long ensures competitiveness. In a world where knowledge and ideas regarded as know-how and used implicitly, knowledge and ideas should be integrated into explicit software with adequate hardware. The important issues are as follows:<br /> (1)Process monitoring technology providing sufficient information for systems to make decisions based on economical investment<br /> (2)Process control technology based on a deeper understanding of processes themselves and of the nature of control<br /> (3)Motion control technology for precise, high-speed, versatile movement in support process control This special issue provides the latest topics related to these issues, and we are sure readers will enjoy reading about and sharing ideas toward a new machine tools and manufacturing technology paradigm. We thank the authors for their contributions to this special issue and the reviewers and editors for their ongoing efforts.

2014 ◽  
Vol 8 (6) ◽  
pp. 791-791
Author(s):  
Tojiro Aoyama

Control and process monitoring are key technologies supporting high machining accuracy and efficiency. This special issue features six papers taking novel approaches to controlling machine and cutting tools and monitoring the machining process. The motion control of machine tools and cutting tools are introduced. A new challenge for monitoring the machining process by referring to NC control servo signals implements a practical proposal. The precise identification of friction at driving elements of machine tool components is an important factor in improving machine tool control motion accuracy. I would like to express my sincere appreciation to the authors and reviewers whose invaluable efforts have helped make the publication of this manuscript possible.


2013 ◽  
Vol 371 ◽  
pp. 431-435 ◽  
Author(s):  
Claudiu Obreja ◽  
Gheorghe Stan ◽  
Lucian Adrian Mihaila ◽  
Marius Pascu

With a view of increasing the productivity on CNC machine tools one of the main solution is to reduce, as much as possible, the auxiliary time consumed with the set-up and replacement of the tools and work pieces engaged in the machining process. Reducing the total time of the tool changing process by the automatic tool changer system can be also achieved through minimizing the number of movements needed for the actual exchange of the tool, from the tool magazine to the machine spindle (the optimization of the tool changing sequences). This paper presents a new design method based on the tree-graph theory. We consider an existing automatic tool changing system, mounted on the milling and boring machining centre, and by applying the new method we obtain all the possible configurations to minimize the tool changing sequence of the automatic tool changer system. By making use of the method proposed we obtain the tool changing sequences with minimum necessary movements needed to exchange the tool. Reconfiguring an existing machine tool provided with an automatic tool changer system by making use of the proposed method leads to obtaining the smallest changing time and thus high productivity.


The Cutting process used in milling is one of the most common type of industrial machining methods. Similar to traditional milling spindles, the motor driven spindles are fitted with an integrated motor, thereby eliminating belts and gears for the transmission of power from the motor to the cutting tools. The innovative machine tools should be highly characterized systems in order to retain the necessary precision, efficiency and reliability. To satisfy their end user's reliability and availability requirements, both the spindle system (Tool/Tool-Holder/ Spindle) and motor tool system need to be configured for their usability and output results. However, the quality of a control device in industrial practice is greatly affected by the spindle cutting output and its reliability. The motor spindles are nothing but the rotating drive shafts which acts as axes for cutting force tools or in machining process for holding cutting instrument. Hence the spindles are one of the important factor in machining tool process and productivity, as these are used to produce parts as well as machines that produce components, which in turn have a significant impact on production levels and quality of products.


2016 ◽  
Vol 10 (5) ◽  
pp. 804-812 ◽  
Author(s):  
Makoto Yamada ◽  
◽  
Tsukasa Kondo ◽  
Kai Wakasa

In the integrally shaping process from a simple material shape to an objective shape, it is necessary to reduce the time required for the machining process in order to improve cost savings and the effectiveness of mass production. For the purpose of achieving high efficiency in the integral shaping from simplicity materials, we have focused on a rough cutting process that requires the most time in the manufacturing process. The purpose of this research is to propose a method for realizing high-speed rough machining using five-axis machine tools with a voxel model, and confirm the high efficiency of the rough cutting. In this research, we use five-axis controlled machine tools for material machining, and suggest two machining methods for the rough cutting process using the voxel model. The first method derives the tool posture where the cutting removal quantity becomes the maximum; this method also carries out a rough cutting process via 3+2 axis controlled machining. The other method carries a complete convex shape that includes the required shape, and simultaneously machines via five-axis machining based on the complete convex shape. This paper demonstrates the 3+2 axis control machining method that uses the voxel model to perform the rough machining process with high efficiency, and the simultaneous five-axis control machining method that uses a complete convex shape model for rough machining. We confirm the results with a computer simulation and actual machining experiments.


2013 ◽  
Vol 423-426 ◽  
pp. 828-832
Author(s):  
Shu Qin Chen ◽  
Yao Ming Li ◽  
Pei Kangc Bai ◽  
Xing Quan Shen

With the diversified market demands, the high precision deep hole processing increased and the difficulty coefficient has been getting greater, Therefore, how to improve the deep hole linearity problem is also imminent. This article studies on the linearity deviation problems in the process of small deep hole processing which diameter is between 3 and 16. From the parameters of gun drill cutting tools, accessoties of machine, and the vibration system of machine tools in the machining process, etc., to discuss the reasons affecting the linearity and put forward corresponding solutions for various influencing factors. Finally through computer analysis software and experimental means to verify the feasibility of the scheme.


2014 ◽  
Vol 564 ◽  
pp. 475-480
Author(s):  
M.F.C. Ibrahim ◽  
B.T. Hang Tuah bin Baharudin ◽  
Naain Shari

Stavax Supreme material is classified as difficult-to-machine material. The difficulty does not preclude the use of this material, especially in the mold industry. In this experiment, high speed end milling of Stavax Supreme (52 HRC) was investigated using five different types of tool. Performance of the cutting tools was compared with respect to tool life and surface roughness of the workpiece. Machining process was conducted in two parameters where each parameter used different rotation spindle speed and feed rate but same chip per tooth removal rate. The best cutting performance was obtained with TiN and TiCN. TiAlN tool also proved to be suitable for high speed end milling of Stavax Supreme but for finishing process only because fast tool wear in high spindle speed. The Xceed coated tool is more suitable for roughing process only in high spindle speed.


2020 ◽  
Vol 11 (3) ◽  
pp. 307-312
Author(s):  
Endra Saputra ◽  
◽  
Gusri Akhyar Ibrahim ◽  
Suryadiwansa Harun ◽  
Eko Agus Supriyadi ◽  
...  

One of the ingredients that are popular now is titanium, but titanium is a material that is difficult to process using conventional milling machining because of the poor thermal conductivity of the material so that the high-temperature machining process produced in the cutting zone causes plastic deformation in cutting tools and increased chemical reactivity in titanium. High-speed micro-milling machining can be used for micromachining of hard metals or alloys that are difficult to achieve at low speeds. Micro milling machining in titanium material 6Al-4V ELI with variations in milling knife diameter 1 and 2 mm, spindle speed 10.000 and 15.000 rpm, feed 0,001 and 0,005 mm / rev, depth of cut 100 and 150 μm, which then do data processing using the method Taguchi full factorial and theoretical analysis. The results showed that the diameter of the tool and into the cut had the greatest effect on burr formation, the greater the diameter of the milling blade resulted in the formation of shorter and smaller burrs, the use of a 1 mm diameter milling blade and a 150 μm depth cut gave rise to long burr formations and tight, while the use of a 2 mm diameter milling blade and a cutting depth of 100 μm give rise to a short and slight burr formation.


2021 ◽  
Vol 24 (2) ◽  
pp. 35-37
Author(s):  
Adrian But ◽  
◽  
Radu Canarache ◽  
Lucian Gal ◽  
◽  
...  

In the future the digitalization and "Industry 4.0” will be in every step of the product lifecycle from design to the manufacture, service, and maintenance. Through digitalization, the companies will be able to operate and program the complex CNC machine tools that will be ready to respond more flexibly to the market demands and at the same time to boost their productivity. Work preparation and production can be breaking down further into additional process steps, ranging from tendering to quality assurance. The demand for digitalization solution can be illustrated thru the following targets and questions what every production company must define and establish: 1. How long time will be the part on the machine to be manufacturi; 2. Is that CNC machine tools (what is able and have the technical characteristics) available; 3. Are necessary new cutting tools for this new job; 4.The CNC operator is familiar with the CNC control equipment; 5. Does the workpiece tolerance correspond with the customer specifications. Is not so easy to link up all this requests and to find the best solutions in time and to have high productivity. Digital manufacturing will give us the preliminary units costs and delivery deadline that must be determined to be able to tender for a job correctly. Today, the amount of time a workpiece will require for machining can be calculated quickly reliably and very important, without trial runs, using CNC simulation solutions. This recommendations from our paper can be an answer at the production companies and the advantage of this implementations is that can be made step by step. The solution of this implementation should be in concordance with the company’s requirements and resources.


2021 ◽  
Author(s):  
Majid Tolouei-Rad ◽  
Muhammad Aamir

Drilling is a vital machining process for many industries. Automotive and aerospace industries are among those industries which produce millions of holes where productivity, quality, and precision of drilled holes plays a vital role in their success. Therefore, a proper selection of machine tools and equipment, cutting tools and parameters is detrimental in achieving the required dimensional accuracy and surface roughness. This subsequently helps industries achieving success and improving the service life of their products. This chapter provides an introduction to the drilling process in manufacturing industries which helps improve the quality and productivity of drilling operations on metallic materials. It explains the advantages of using multi-spindle heads to improve the productivity and quality of drilled holes. An analysis of the holes produced by a multi-spindle head on aluminum alloys Al2024, Al6061, and Al5083 is presented in comparison to traditional single shot drilling. Also the effects of using uncoated carbide and high speed steel tools for producing high-quality holes in the formation of built-up edges and burrs are investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document