scholarly journals Dynamic Color Object Recognition Using Fuzzy Logic

Author(s):  
Napoleon H. Reyes ◽  
◽  
Elmer P. Dadios ◽  

This paper presents a novel Logit-Logistic Fuzzy Color Constancy (LLFCC) algorithm and its variants for dynamic color object recognition. Contrary to existing color constancy algorithms, the proposed scheme focuses on manipulating a color locus depicting the colors of an object, and not stabilizing the whole image appearance per se. In this paper, a new set of adaptive contrast manipulation operators is introduced and utilized in conjunction with a fuzzy inference system. Moreover, a new perspective in extracting color descriptors of an object from the rg-chromaticity space is presented. Such color descriptors allow for the reduction of the effects of brightness/darkness and at the same time adhere to human perception of colors. The proposed scheme tremendously cuts processing time by simultaneously compensating for the effects of a multitude of factors that plague the scene of traversal, eliminating the need for image pre-processing steps. Experiment results attest to its robustness in scenes with multiple white light sources, spatially varying illumination intensities, varying object position, and presence of highlights.

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 210 ◽  
Author(s):  
Yi-Chun Du ◽  
Muslikhin Muslikhin ◽  
Tsung-Han Hsieh ◽  
Ming-Shyan Wang

This paper develops a hybrid algorithm of adaptive network-based fuzzy inference system (ANFIS) and regions with convolutional neural network (R-CNN) for stereo vision-based object recognition and manipulation. The stereo camera at an eye-to-hand configuration firstly captures the image of the target object. Then, the shape, features, and centroid of the object are estimated. Similar pixels are segmented by the image segmentation method, and similar regions are merged through selective search. The eye-to-hand calibration is based on ANFIS to reduce computing burden. A six-degree-of-freedom (6-DOF) robot arm with a gripper will conduct experiments to demonstrate the effectiveness of the proposed system.


Author(s):  
GRAHAM D. FINLAYSON ◽  
GUI YUN TIAN

Color images depend on the color of the capture illuminant and object reflectance. As such image colors are not stable features for object recognition, however stability is necessary since perceived colors (the colors we see) are illuminant independent and do correlate with object identity. Before the colors in images can be compared, they must first be preprocessed to remove the effect of illumination. Two types of preprocessing have been proposed: first, run a color constancy algorithm or second apply an invariant normalization. In color constancy preprocessing the illuminant color is estimated and then, at a second stage, the image colors are corrected to remove color bias due to illumination. In color invariant normalization image RGBs are redescribed, in an illuminant independent way, relative to the context in which they are seen (e.g. RGBs might be divided by a local RGB average). In theory the color constancy approach is superior since it works in a scene independently: color invariant normalization can be calculated post-color constancy but the converse is not true. However, in practice color invariant normalization usually supports better indexing. In this paper we ask whether color constancy algorithms will ever deliver better indexing than color normalization. The main result of this paper is to demonstrate equivalence between color constancy and color invariant computation. The equivalence is empirically derived based on color object recognition experiments. colorful objects are imaged under several different colors of light. To remove dependency due to illumination these images are preprocessed using either a perfect color constancy algorithm or the comprehensive color image normalization. In the perfect color constancy algorithm the illuminant is measured rather than estimated. The import of this is that the perfect color constancy algorithm can determine the actual illuminant without error and so bounds the performance of all existing and future algorithms. Post-color constancy or color normalization processing, the color content is used as cue for object recognition. Counter-intuitively perfect color constancy does not support perfect recognition. In comparison the color invariant normalization does deliver near-perfect recognition. That the color constancy approach fails implies that the scene effective illuminant is different from the measured illuminant. This explanation has merit since it is well known that color constancy is more difficult in the presence of physical processes such as fluorescence and mutual illumination. Thus, in a second experiment, image colors are corrected based on a scene dependent "effective illuminant". Here, color constancy preprocessing facilitates near-perfect recognition. Of course, if the effective light is scene dependent then optimal color constancy processing is also scene dependent and so, is equally a color invariant normalization.


2021 ◽  
Vol 11 (21) ◽  
pp. 9936
Author(s):  
Yunhui Luo ◽  
Xingguang Wang ◽  
Qing Wang ◽  
Yehong Chen

Computational color constancy (CCC) is a fundamental prerequisite for many computer vision tasks. The key of CCC is to estimate illuminant color so that the image of a scene under varying illumination can be normalized to an image under the canonical illumination. As a type of solution, combination algorithms generally try to reach better illuminant estimation by weighting other unitary algorithms for a given image. However, due to the diversity of image features, applying the same weighting combination strategy to different images might result in unsound illuminant estimation. To address this problem, this study provides an effective option. A two-step strategy is first employed to cluster the training images, then for each cluster, ANFIS (adaptive neuro-network fuzzy inference system) models are effectively trained to map image features to illuminant color. While giving a test image, the fuzzy weights measuring what degrees the image belonging to each cluster are calculated, thus a reliable illuminant estimation will be obtained by weighting all ANFIS predictions. The proposed method allows illuminant estimation to be dynamic combinations of initial illumination estimates from some unitary algorithms, relying on the powerful learning and reasoning capabilities of ANFIS. Extensive experiments on typical benchmark datasets demonstrate the effectiveness of the proposed approach. In addition, although there is an initial observation that some learning-based methods outperform even the most carefully designed and tested combinations of statistical and fuzzy inference systems, the proposed method is good practice for illuminant estimation considering fuzzy inference eases to implement in imaging signal processors with if-then rules and low computation efforts.


2018 ◽  
Vol 35 (4) ◽  
pp. 4589-4608 ◽  
Author(s):  
Maedeh Jamali ◽  
Shima Rafiei ◽  
S.M. Reza Soroushmehr ◽  
Nader Karimi ◽  
Shahram Shirani ◽  
...  

2017 ◽  
Vol 3 (1) ◽  
pp. 36-48
Author(s):  
Erwan Ahmad Ardiansyah ◽  
Rina Mardiati ◽  
Afaf Fadhil

Prakiraan atau peramalan beban listrik dibutuhkan dalam menentukan jumlah listrik yang dihasilkan. Ini menentukan  agar tidak terjadi beban berlebih yang menyebabkan pemborosan atau kekurangan beban listrik yang mengakibatkan krisis listrik di konsumen. Oleh karena itu di butuhkan prakiraan atau peramalan yang tepat untuk menghasilkan energi listrik. Teknologi softcomputing dapat digunakan  sebagai metode alternatif untuk prediksi beban litrik jangka pendek salah satunya dengan metode  Adaptive Neuro Fuzzy Inference System pada penelitian tugas akhir ini. Data yang di dapat untuk mendukung penelitian ini adalah data dari APD PLN JAWA BARAT yang berisikan laporan data beban puncak bulanan penyulang area gardu induk majalaya dari januari 2011 sampai desember 2014 sebagai data acuan dan data aktual januari-desember 2015. Data kemudian dilatih menggunakan metode ANFIS pada software MATLAB versi b2010. Dari data hasil pelatihan data ANFIS kemudian dilakukan perbandingan dengan data aktual dan data metode regresi meliputi perbandingan anfis-aktual, regresi-aktual dan perbandingan anfis-regresi-aktual. Dari perbandingan disimpulkan bahwa data metode anfis lebih mendekati data aktual dengan rata-rata 1,4%, menunjukan prediksi ANFIS dapat menjadi referensi untuk peramalan beban listrik dimasa depan.


2009 ◽  
Vol 8 (3) ◽  
pp. 887-897
Author(s):  
Vishal Paika ◽  
Er. Pankaj Bhambri

The face is the feature which distinguishes a person. Facial appearance is vital for human recognition. It has certain features like forehead, skin, eyes, ears, nose, cheeks, mouth, lip, teeth etc which helps us, humans, to recognize a particular face from millions of faces even after a large span of time and despite large changes in their appearance due to ageing, expression, viewing conditions and distractions such as disfigurement of face, scars, beard or hair style. A face is not merely a set of facial features but is rather but is rather something meaningful in its form.In this paper, depending on the various facial features, a system is designed to recognize them. To reveal the outline of the face, eyes, ears, nose, teeth etc different edge detection techniques have been used. These features are extracted in the term of distance between important feature points. The feature set obtained is then normalized and are feed to artificial neural networks so as to train them for reorganization of facial images.


Sign in / Sign up

Export Citation Format

Share Document