scholarly journals Recommendation System Based on Generative Adversarial Network with Graph Convolutional Layers

Author(s):  
Takato Sasagawa ◽  
◽  
Shin Kawai ◽  
Hajime Nobuhara

A graph convolutional generative adversarial network (GCGAN) is proposed to provide recommendations for new users or items. To maintain scalability, the discriminator was improved to capture the latent features of users and items, using graph convolution from a minibatch-sized bipartite graph. In the experiment using MovieLens, it was confirmed that the proposed GCGAN had better performance than the conventional CFGAN, when MovieLens 1M was employed with sufficient data. The proposed method is characterized in such a manner that it can learn domain information of both, users and items, and it does not require to relearn a model for a new node. Further, it can be developed for any service having such conditions, in the information recommendation field.

Author(s):  
A.V. Prosvetov

Widely used recommendation systems do not meet all industry requirements, so the search for more advanced methods for creating recommendations continues. The proposed new methods based on Generative Adversarial Networks (GAN) have a theoretical comparison with other recommendation algorithms; however, real-world comparisons are needed to introduce new methods in the industry. In our work, we compare recommendations from the Generative Adversarial Network with recommendation from the Deep Semantic Similarity Model (DSSM) on real-world case of airflight tickets. We found a way to train the GAN so that users receive appropriate recommendations, and during A/B testing, we noted that the GAN-based recommendation system can successfully compete with other neural networks in generating recommendations. One of the advantages of the proposed approach is that the GAN training process avoids a negative sampling, which causes a number of distortions in the final ratings of recommendations. Due to the ability of the GAN to generate new objects from the distribution of the training set, we assume that the Conditional GAN is able to solve the cold start problem.


Author(s):  
T. Shinohara ◽  
H. Xiu ◽  
M. Matsuoka

Abstract. This study introduces a novel image to a 3D point-cloud translation method with a conditional generative adversarial network that creates a large-scale 3D point cloud. This can generate supervised point clouds observed via airborne LiDAR from aerial images. The network is composed of an encoder to produce latent features of input images, generator to translate latent features to fake point clouds, and discriminator to classify false or real point clouds. The encoder is a pre-trained ResNet; to overcome the difficulty of generating 3D point clouds in an outdoor scene, we use a FoldingNet with features from ResNet. After a fixed number of iterations, our generator can produce fake point clouds that correspond to the input image. Experimental results show that our network can learn and generate certain point clouds using the data from the 2018 IEEE GRSS Data Fusion Contest.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qiang Yang ◽  
Xiaokun Li

Abstract Background An increasing number of studies have shown that lncRNAs are crucial for the control of hormones and the regulation of various physiological processes in the human body, and deletion mutations in RNA are related to many human diseases. LncRNA- disease association prediction is very useful for understanding pathogenesis, diagnosis, and prevention of diseases, and is helpful for labelling relevant biological information. Results In this manuscript, we propose a computational model named bidirectional generative adversarial network (BiGAN), which consists of an encoder, a generator, and a discriminator to predict new lncRNA-disease associations. We construct features between lncRNA and disease pairs by utilizing the disease semantic similarity, lncRNA sequence similarity, and Gaussian interaction profile kernel similarities of lncRNAs and diseases. The BiGAN maps the latent features of similarity features to predict unverified association between lncRNAs and diseases. The computational results have proved that the BiGAN performs significantly better than other state-of-the-art approaches in cross-validation. We employed the proposed model to predict candidate lncRNAs for renal cancer and colon cancer. The results are promising. Case studies show that almost 70% of lncRNAs in the top 10 prediction lists are verified by recent biological research. Conclusion The experimental results indicated that our proposed model had an accurate predictive ability for the association of lncRNA-disease pairs.


Author(s):  
Jinyang Sun ◽  
Baisong Liu ◽  
Hao Ren ◽  
Weiming Huang

The major challenge of recommendation system (RS) based on implict feedback is to accurately model users’ preferences from their historical feedback. Nowadays, researchers has tried to apply adversarial technique in RS, which had presented successful results in various domains. To a certain extent, the use of adversarial technique improves the modeling of users’ preferences. Nonetheless, there are still many problems to be solved, such as insufficient representation and low-level interaction. In this paper, we propose a recommendation algorithm NCGAN which combines neural collaborative filtering and generative adversarial network (GAN). We use the neural networks to extract users’ non-linear characteristics. At the same time, we integrate the GAN framework to guide the recommendation model training. Among them, the generator aims to make user recommendations and the discriminator is equivalent to a measurement tool which could measure the distance between the generated distribution and users’ ground distribution. Through comparison with other existing recommendation algorithms, our algorithm show better experimental performance in all indicators.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


Sign in / Sign up

Export Citation Format

Share Document