Special Issue on Mobile Robot

1999 ◽  
Vol 11 (1) ◽  
pp. 1-1
Author(s):  
Kiyoshi Komoriya ◽  

Mobility, or locomotion, is as important a function for robots as manipulation. A robot can enlarge its work space by locomotion. It can also recognize its environment well with its sensors by moving around and by observing its surroundings from various directions. Much researches has been done on mobile robots and the research appears to be mature. Research activity on robot mobility is still very active; for example, 22% of the sessions at ICRA'98 - the International Conference on Robotics and Automation - and 24% of the sessions at IROS'98 - the International Conference on Intelligent Robots and Systems - dealt with issues directly related to mobile robots. One of the main reasons may be that intelligent mobile robots are thought to be the closest position to autonomous robot applications. This special issue focuses on a variety of mobile robot research from mobile mechanisms, localization, and navigation to remote control through networks. The first paper, entitled ""Control of an Omnidirectional Vehicle with Multiple Modular Steerable Drive Wheels,"" by M. Hashimoto et al., deals with locomotion mechanisms. They propose an omnidirectional mobile mechanism consisting of modular steerable drive wheels. The omnidirectional function of mobile mechanisms will be an important part of the human-friendly robot in the near future to realize flexible movements in indoor environments. The next three papers focus on audiovisual sensing to localize and navigate a robot. The second paper, entitled ""High-Speed Measurement of Normal Wall Direction by Ultrasonic Sensor,"" by A. Ohya et al., proposes a method to measure the normal direction of walls by ultrasonic array sensor. The third paper, entitled ""Self-Position Detection System Using a Visual-Sensor for Mobile Robots,"" is written by T. Tanaka et al. In their method, the position of the robot is decided by measuring marks such as name plates and fire alarm lamps by visual sensor. In the fourth paper, entitled ""Development of Ultra-Wide-Angle Laser Range Sensor and Navigation of a Mobile Robot in a Corridor Environment,"" written by Y Ando et al., a very wide view-angle sensor is realized using 5 laser fan beam projectors and 3 CCD cameras. The next three papers discussing navigation problems. The fifth paper, entitled ""Autonomous Navigation of an Intelligent Vehicle Using 1-Dimensional Optical Flow,"" by M. Yamada and K. Nakazawa, discusses navigation based on visual feedback. In this work, navigation is realized by general and qualitative knowledge of the environment. The sixth paper, entitled ""Development of Sensor-Based Navigation for Mobile Robots Using Target Direction Sensor,"" by M. Yamamoto et al., proposes a new sensor-based navigation algorithm in an unknown obstacle environment. The seventh paper, entitled ""Navigation Based on Vision and DGPS Information for Mobile Robots,"" S. Kotani et al., describes a navigation system for an autonomous mobile robot in an outdoor environment. The unique point of their paper is the utilization of landmarks and a differential global positioning system to determine robot position and orientation. The last paper deals with the relationship between the mobile robot and computer networks. The paper, entitled ""Direct Mobile Robot Teleoperation via Internet,"" by K. Kawabata et al., proposes direct teleoperation of a mobile robot via the Internet. Such network-based robotics will be an important field in robotics application. We sincerely thank all of the contributors to this special issue for their cooperation from the planning stage to the review process. Many thanks also go to the reviewers for their excellent work. We will be most happy if this issue aids readers in understanding recent trends in mobile robot research and furthers interest in this research field.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Rodrigo Munguía ◽  
Carlos López-Franco ◽  
Emmanuel Nuño ◽  
Adriana López-Franco

This work presents a method for implementing a visual-based simultaneous localization and mapping (SLAM) system using omnidirectional vision data, with application to autonomous mobile robots. In SLAM, a mobile robot operates in an unknown environment using only on-board sensors to simultaneously build a map of its surroundings, which it uses to track its position. The SLAM is perhaps one of the most fundamental problems to solve in robotics to build mobile robots truly autonomous. The visual sensor used in this work is an omnidirectional vision sensor; this sensor provides a wide field of view which is advantageous in a mobile robot in an autonomous navigation task. Since the visual sensor used in this work is monocular, a method to recover the depth of the features is required. To estimate the unknown depth we propose a novel stochastic triangulation technique. The system proposed in this work can be applied to indoor or cluttered environments for performing visual-based navigation when GPS signal is not available. Experiments with synthetic and real data are presented in order to validate the proposal.


2002 ◽  
Vol 14 (4) ◽  
pp. 323-323
Author(s):  
Takashi Tsubouchi ◽  
◽  
Keiji Nagatani ◽  

Since the dawning of the Robotics age, mobile robots have been important objectives of research and development. Working from such aspects as locomotion mechanisms, path and motion planning algorithms, navigation, map building and localization, and system architecture, researchers are working long and hard. Despite the fact that mobile robotics has a shorter history than conventional mechanical engineering, it has already accumulated a major, innovative, and rich body of R&D work. Rapid progress in modern scientific technology had advanced to where down-sized low-cost electronic devices, especially highperformance computers, can now be built into such mobile robots. Recent trends in ever higher performance and increased downsizing have enabled those working in the field of mobile robotics to make their models increasingly intelligent, versatile, and dexterous. The down-sized computer systems implemented in mobile robots must provide high-speed calculation for complicated motion planning, real-time image processing in image recognition, and sufficient memory for storing the huge amounts of data required for environment mapping. Given the swift progress in electronic devices, new trends are now emerging in mobile robotics. This special issue on ""Modern Trends in Mobile Robotics"" provides a diverse collection of distinguished papers on modern mobile robotics research. In the area of locomotion mechanisms, Huang et al. provide an informative paper on control of a 6-legged walking robot and Fujiwara et al. contribute progressive work on the development of a practical omnidirectional cart. Given the importance of vision systems enabling robots to survey their environments, Doi et al., Tang et al., and Shimizu present papers on cutting-edge vision-based navigation. On the crucial subject of how to equip robots with intelligence, Hashimoto et al. present the latest on sensor fault detection in dead-reckoning, Miura et al. detail the probabilistic modeling of obstacle motion during mobile robot navigation, Hada et al. treat long-term mobile robot activity, and Lee et al. explore mobile robot control in intelligent space. As guest editors, we are sure readers will find these articles both informative and interesting concerning current issues and new perspectives in modern trends in mobile robotics.


1999 ◽  
Vol 11 (1) ◽  
pp. 17-24
Author(s):  
Takayuki Tanaka ◽  
◽  
Yasunori Yamazaki ◽  
Hiroki Watanabe ◽  
Takeshi Katae ◽  
...  

We have been developing an intelligent mobile robot for use as an office building secretary or aid during the day and a security guard or maintenance engineer, e.g., for cleaning floors, at night. Since the robot works and moves autonomously among people in an office environment, it must be able to recognize its own location and environment. We proposed two types of self-positoin detection based on a visual sensor. One is global self-positioning (GSP) by recognizing a room number. The other is local self-positioning (LSP) calculating the relationship between the robot and three light landmarks such as two exit lamps and a fire hydrant lamp in corridors. Experiments verified the effectiveness of the robot's self-position detection.


2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2014 ◽  
Vol 1079-1080 ◽  
pp. 909-912 ◽  
Author(s):  
Tsing Tshih Tsung ◽  
Thi Khanh Tang ◽  
Nguyen Hoai

Non-contactingproximity sensors are widely promoted for position detection through determiningthe distance between sensor and object. Besides, the usage of non-contactinginductive proximity sensors for object detections such as finding non-ferrousand ferrous metal tape is the popular technique in mobile robots. Most of thetechnology uses simple HF- oscillation principle as an inductive proximitysensor (IPS) with a decrease in the quality of the oscillator circuit’selectromagnetic to find the tape. By applying this technique, the externalfactors may cause negative effects to systemperformance. To overcome this situation, we set up a hand measurement withinductive proximity sensors and two tapes, meanwhile main tape and disturbingtape are separated by an obstruction sheet. After measuring, dataresults are used to analyze the influence of the obstruction sheet thickness anddisturbance tape to the noise in received signals. The research isthe fundament for further applications, based on inductive proximity sensor formobile robot that could be more robust against noises and disturbances.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chittaranjan Paital ◽  
Saroj Kumar ◽  
Manoj Kumar Muni ◽  
Dayal R. Parhi ◽  
Prasant Ranjan Dhal

PurposeSmooth and autonomous navigation of mobile robot in a cluttered environment is the main purpose of proposed technique. That includes localization and path planning of mobile robot. These are important aspects of the mobile robot during autonomous navigation in any workspace. Navigation of mobile robots includes reaching the target from the start point by avoiding obstacles in a static or dynamic environment. Several techniques have already been proposed by the researchers concerning navigational problems of the mobile robot still no one confirms the navigating path is optimal.Design/methodology/approachTherefore, the modified grey wolf optimization (GWO) controller is designed for autonomous navigation, which is one of the intelligent techniques for autonomous navigation of wheeled mobile robot (WMR). GWO is a nature-inspired algorithm, which mainly mimics the social hierarchy and hunting behavior of wolf in nature. It is modified to define the optimal positions and better control over the robot. The motion from the source to target in the highly cluttered environment by negotiating obstacles. The controller is authenticated by the approach of V-REP simulation software platform coupled with real-time experiment in the laboratory by using Khepera-III robot.FindingsDuring experiments, it is observed that the proposed technique is much efficient in motion control and path planning as the robot reaches its target position without any collision during its movement. Further the simulation through V-REP and real-time experimental results are recorded and compared against each corresponding results, and it can be seen that the results have good agreement as the deviation in the results is approximately 5% which is an acceptable range of deviation in motion planning. Both the results such as path length and time taken to reach the target is recorded and shown in respective tables.Originality/valueAfter literature survey, it may be said that most of the approach is implemented on either mathematical convergence or in mobile robot, but real-time experimental authentication is not obtained. With a lack of clear evidence regarding use of MGWO (modified grey wolf optimization) controller for navigation of mobile robots in both the environment, such as in simulation platform and real-time experimental platforms, this work would serve as a guiding link for use of similar approaches in other forms of robots.


Author(s):  
Elmer P. Dadios ◽  

The Third International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) was held in Century Park Hotel, Manila, Philippines from March 15 to 18, 2007. The theme on this conference was Technology Creativity and Innovations for Economic Development. As has been done from the previous HNICEM conferences, cutting edge papers presented from this conference are reviewed and selected for JACIII special issue publication. In this special issue, 10 articles are selected that will provide valuable references for researchers and practitioners. The first article presents an integrated algorithm that provides a mobile robot the ability to plan an optimal path and does online collision avoidance in a totally unknown environment. The second article presents a fuzzy controller technique in navigation with obstacle avoidance for a general purpose mobile robot in a given global environment with image processing technique using Open Source Computer Vision. The third article presents a model-based controller for helicopter using the sliding mode approach. The controller assumes that only measured outputs are available and it uses sliding mode observer to estimate the state of the system. The fourth article presents a real-time fuzzy logic based parallel parking system in an FPGA platform. The fifth article presents performance analysis of container unloading operations using simplified analytical model (SAM). The sixth article presents a neuro-fuzzy approach with additional moving average window data filter and fuzzy clustering algorithm use to forecast electrical load. The seventh article presents a new design and implementation of a multi-output fuzzy controller for real time control which utilizes lesser memory and executes faster than an existing type of multiple single-output fuzzy logic controllers. The eight article presents a new method based on multi-objective evolutionary algorithms to evolve low complexity neural controllers that allows an agent to perform two different tasks simultaneously. The ninth and tenth articles present genetic networks programming for stock market trading rules and for traffic systems applications, respectively. We extend our warmest thanks and deepest gratitude to the distinguished authors and reviewers who have contributed to this special issue for their outstanding contributions and cooperation. We are also grateful to Prof. Toshio Fukuda and Prof. Kaoru Hirota, chief editors of JACIII, for their continued support to all the HINICEM International Conferences. Come March 12 to 15, 2009, the 4th HNICEM International Conference will be held in Manila, Philippines. We thank the IEEE Philippines for its continuing sponsorship. Also to JACIII journal, as outstanding papers presented in this conference will be selected for publication in a special issue. We invite you to submit your research papers and to participate in HNICEM 2009. For further information, please visit “http://www.dlsu.edu.ph/conferences/hnicem/”.


Author(s):  
Jean-Christophe Fauroux ◽  
Frédéric Chapelle ◽  
Belhassen-Chedli Bouzgarrou ◽  
Philippe Vaslin ◽  
Mohamed Krid ◽  
...  

This chapter presents recent mechatronics developments to create original terrestrial mobile robots capable of crossing obstacles and maintaining their stability on irregular grounds. Obstacle crossing is both considered at low and high speeds. The developed robots use wheeled propulsion, efficient on smooth grounds, and improve performance on irregular grounds with additional mobilities, bringing them closer to legged locomotion (hybrid locomotion). Two sections are dedicated to low speed obstacle crossing. Section two presents an original mobile robot combining four actuated wheels with an articulated frame to improve obstacle climbing. Section three extends this work to a new concept of modular poly-robot for agile transport of long payloads. The last two sections deal with high-speed motion. Section four describes new suspensions with four mobilities that maintain pitch stability of vehicles crossing obstacles at high speed. After the shock, section five demonstrates stable pitch control during ballistic phase by accelerating-braking the wheels in flight.


2015 ◽  
Vol 27 (4) ◽  
pp. 318-326 ◽  
Author(s):  
Shin'ichi Yuta ◽  
◽  

<div class=""abs_img""> <img src=""[disp_template_path]/JRM/abst-image/00270004/01.jpg"" width=""300"" /> Autonomous mobile robot in RWRC 2014</div> The Tsukuba Challenge, an open experiment for autonomous mobile robotics researchers, lets mobile robots travel in a real – and populated – city environment. Following the challenge in 2013, the mobile robots must navigate autonomously to their destination while, as the task of Tsukuba Challenge 2014, looking for and finding specific persons sitting in the environment. Total 48 teams (54 robots) seeking success in this complex challenge. </span>


Sign in / Sign up

Export Citation Format

Share Document