Design of a Precision Linear-Rotary Positioning Actuator

2006 ◽  
Vol 18 (6) ◽  
pp. 803-807 ◽  
Author(s):  
Wei Gao ◽  
◽  
Shinji Sato ◽  
Yasumasa Sakurai ◽  
Satoshi Kiyono

We designed a prototype linear-rotary (<I>Z</I>-θ) dual-axis actuator for precision positioning in which an aluminum rotor (moving element) moves along and rotates around the axis (<I>Z</I>) of a ceramic cylinder (drive rod). The <I>Z</I>-θ actuator consists of a <I>Z</I>-piezoelectric actuator (<I>Z</I>-PZT) (maximum stroke: 12µm) for linear <I>Z</I>-motion, two θ-piezoelectric actuators (θ-PZTs) (maximum stroke: 9.1µm) for rotational θ-motion, a drive rod, and a rotor. θ-PZTs are attached to the drive rod via a clamp. The rotor’s inner side contacts the drive rod with a certain friction. <I>Z</I>-axis positioning uses a smooth impact drive to achieve a long stroke by applying periodic saw-toothed voltage to the <I>Z</I>-PZT. Sinusoidal voltage is applied to θ-PZTs for rotary positioning, not based on a smooth impact drive. The prototype actuator stroke along the <I>Z</I>-axis, limited by the drive rod length, is 10mm and rotary motion is unrestricted. Positioning resolution is a few nanometers and maximum speed in the <I>Z</I>-direction is approximately 2.4mm/s. The maximum revolution speed is 50rpm.

Author(s):  
Jianping Li ◽  
Junjie Cai ◽  
Nen Wan ◽  
Yili Hu ◽  
Jianming Wen ◽  
...  

AbstractA novel bionic piezoelectric actuator based on the walrus motion to achieve high performance on large working stroke for micro/nano positioning systems is first proposed in this study. The structure of the proposed walrus type piezoelectric actuator is described, and its motion principle is presented in details. An experimental system is set up to verify its feasibility and explore its working performances. Experimental results indicate that the proposed walrus type piezoelectric actuator could realize large working stroke with only one driving unit and one coupled clamping unit; the maximum stepping displacement is ΔLmax = 19.5 μm in the case that the frequency f = 1 Hz and the voltage U = 120 V; the maximum speed Vmax = 2275.2 μm · s−1 when the frequency f = 900 Hz and the voltage U = 120 V; the maximum vertical load mmax = 350 g while the voltage U = 120 V and the frequency f = 1 Hz. This study shows the feasibility of mimicking the bionic motion of the real walrus animal to the design of piezoelectric actuators, which is hopeful for the real application of micro/nano positioning systems to achieve large working stroke and high performance.


2014 ◽  
Vol 625 ◽  
pp. 224-229
Author(s):  
Lien Kai Chang ◽  
Mi Ching Tsai

Recent advances in measurement systems require positioning systems with high stiffness, accuracy and speed. Piezoelectric actuators which are featured with mechanical simplicity, quick response, and electromagnetic immunity, are often used in precision positioning. It is known that piezoelectric actuators can achieve high positioning accuracy by the stepping mode but low speed. By contrast, the resonance vibration mode will offer high positioning speed, but sacrifices the high inherent position resolution. For the stepping mode, the displacement of the piezoelectric actuator significantly affects the speed, of which larger displacement induces higher speed. For the resonance vibration mode, an elliptical motion of the piezoelectric actuator tip is generated by horizontal and vertical eigenmodes, and the optimal efficiency can be achieved when the two eigenmodes are operated at the same frequency. For the applications of high positioning accuracy and speed, a piezoelectric actuator should be designed by taking these two operation modes into consideration simultaneously. Based on these requirements, the optimal structural dimensions of a piezoelectric actuator are obtained using a genetic algorithm.


2000 ◽  
Author(s):  
Jeffrey S. N. Paine ◽  
David S. Bennett ◽  
Carlos E. Cuadros

Abstract As piezoelectric actuators are developed for high strokes and/or high force applications, the amount of piezoelectric material used in the actuator must also increase. Reducing the size of drive electronics becomes difficult using traditional linear power electronics packages when applications require as much as 40 μF of piezoelectric load. In order to efficiently drive piezoelectric actuator systems, bi-directional systems (drivers that recover the energy put into the piezoelectric capacitor) must be used. Since less than 10% of the power going into the piezoelectric actuator is real versus the large reactive load used to power the piezoelectric materials, bidirectional systems have a much higher efficiency. A comparison is made between traditional linear and PWM amplifier systems and tailored piezoelectric bi-directional driver systems. Bi-directional systems have power dissipation levels up to 1/8th those of traditional linear amplifier systems. In the course of the research both linear and PWM concepts were investigated. A rationale for comparing the overall efficiency of drive electronics systems is presented. Some innovative efficient concepts for piezoelectric system drivers are presented and discussed.


2018 ◽  
Vol 217 ◽  
pp. 02001
Author(s):  
Mohd Hafiz Abdul Satar ◽  
Ahmad Zhafran Ahmad Mazlan

Hysteresis is one of the non-linearity characteristics of the piezoelectric material. This characteristic is important to be characterized since it can affect the performance of the piezoelectric material as sensor or actuator in many applications. In this study, the model of the coupled aluminium beam with single piezoelectric patch material is constructed to investigate the hysteresis effect of the piezoelectric material to the whole beam structure. A P-876 DuraActTM type piezoelectric patch material is used in modelling of the piezoelectric actuator. Firstly, the modal analysis of the coupled beam-piezoelectric actuator is determined to get the natural frequencies and mode shapes. Then, the piezoelectric patch material is investigated in terms of actuator by given a sinusoidal voltage excitation and output in terms of deflection, stress and strain of the piezoelectric actuator are investigated. From the results, it is clear that, the coupled beam-piezoelectric material is affected by the hysteresis of the piezoelectric material and the natural frequencies of the beam structure. This characteristic is important for the piezoelectric actuator manufacturer and by providing the correction algorithm, it can improve the performance of the piezoelectric actuator for many applications.


2019 ◽  
Vol 16 (07) ◽  
pp. 1850106 ◽  
Author(s):  
Prakasha Chigahalli Ramegowda ◽  
Daisuke Ishihara ◽  
Tomoya Niho ◽  
Tomoyoshi Horie

This work presents multiphysics numerical analysis of piezoelectric actuators realized using the finite element method (FEM) and their performances to analyze the structure-electric interaction in three-dimensional (3D) piezoelectric continua. Here, we choose the piezoelectric bimorph actuator without the metal shim and with the metal shim as low-frequency problems and a surface acoustic wave device as a high-frequency problem. More attention is given to low-frequency problems because in our application micro air vehicle’s wings are actuated by piezoelectric bimorph actuators at low frequency. We employed the Newmark’s time integration and the central difference time integration to study the dynamic response of piezoelectric actuators. Monolithic coupling, noniterative partitioned coupling and partitioned iterative coupling schemes are presented. In partitioned iterative coupling schemes, the block Jacobi and the block Gauss–Seidel methods are employed. Resonance characteristics are very important in micro-electro-mechanical system (MEMS) applications. Therefore, using our proposed coupled algorithms, the resonance characteristics of bimorph actuator is analyzed. Comparison of the accuracy and computational efficiency of the proposed numerical finite element coupled algorithms have been carried out for 3D structure–electric interaction problems of a piezoelectric actuator. The numerical results obtained by the proposed algorithms are in good agreement with the theoretical solutions.


Author(s):  
Ching-I Chen

Abstract This study focused on the application of active vibration control strategies for flexible moving structures which degrade into transient dynamic vibration problem. These control strategies are based primarily on modal control methods in which the flexible moving structures are controlled by reducing their dominant vibration modes. This work numerically investigated active control of the elastodynamic response of a four-bar mechanical system, using a piezoelectric actuator. A controller based on the modified independent modal space control theory was also utilized. This control theory produced overall excellent performance in terms of achieving the desired closed-loop structural damping. The merits of this technique include its ability to manage the spill-over effect, i.e. eliminate the magnitude of vibrations associated with uncontrolled modes, using only a few selected modes for control. This control was accomplished using a time sharing technique, which reduces the number of piezoelectric actuators required to control a large number of vibration modes. Furthermore, this algorithm implements a procedure for determining the optimal locations for the piezoelectric actuators. The dynamics of a steel four-bar linkage was selected with a flexible coupler separated by six elements and one piezoelectric actuator was used in the numerical simulation. The optimal actuator position was located at the third element from the right to the left. Results in this study demonstrated that a highly desired the structural vibration damping could be achieved. This control technique can be applied to transient dynamic systems.


2016 ◽  
Vol 28 (10) ◽  
pp. 1334-1345 ◽  
Author(s):  
Ahmed Abuzaid ◽  
Meftah Hrairi ◽  
MSI Shaik Dawood

Active repairs using piezoelectric actuators can play a significant role in reducing the crack damage propagation in thin plate structures. Mode-I crack opening displacement is the most predominant one in tension, and it is responsible for the failure which in turn affects the load carrying capability of the cracked structure. In addition, there are limited studies that investigated the effect of the piezoelectric actuator over mode-I active repair. In this study, the mode-I stress intensity factor for a plate with a center crack, and a bonded piezoelectric actuator was modeled using the linear elastic fracture mechanics. For this, an analytical closed-form solution is developed using the virtual crack closure technique taking into account mode-I as the only effective mode, coupling effects of the piezoelectric patch, and the singular stress at the crack tip. In addition, the total stress intensity factor was obtained by the superposition of the stress intensity factor obtained from the stresses produced by the piezoelectric actuators on the crack surfaces as the only external loads on the cracked plate and the stress intensity factor due to the far-field tension load. The proposed analytical model for mode-I stress intensity factor was verified by a finite element–based approach using ANSYS finite element software. The results demonstrated a good agreement between the analytical and finite element models with a relative error of less than 4% in all the cases studied. The results illustrated that the piezoelectric patch is efficient in reducing stress intensity factor when an extension mode of the actuator is applied. However, applying a contraction mode of the piezoelectric actuators produced negative strain which increased the stress intensity factor and thus the severity of the cracked structure and could lead to damage propagation.


Sign in / Sign up

Export Citation Format

Share Document