Development of Sensory Feedback Device for Myoelectric Prosthetic Hand to Provide Hardness of Objects to Users

2016 ◽  
Vol 28 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Takakuni Morita ◽  
◽  
Takeshi Kikuchi ◽  
Chiharu Ishii ◽  

[abstFig src='/00280003/12.jpg' width=""300"" text='Sensory feedback device for myoelectric hand' ] In this paper, a sensory feedback device was developed to improve the operability of a myoelectric prosthetic hand. The device is worn on the user’s upper arm and provides object hardness feedback to by winding a belt onto the upper arm using a motor. When the finger of the myoelectric prosthetic hand grabs the object, the contact force on the object is detected by a pressure sensor attached to a finger cushion on the myoelectric prosthetic hand. Based on the sensor’s input, the hardness of the object is calculated. According to the hardness of the object, a reference input to realize the corresponding winding speed of the belt is generated by a reference input generator. Then, the motor of the feedback device is controlled to track the reference input by using the self-tuning PID control technique, taking parameter variation into account. Thus, the belt of the feedback device is wound by the motor and tightens the user’s upper arm, thereby enabling the user to receive tactile feedback. Finally, confirmation tests are conducted based on a psychophysical method to verify the effectiveness of the feedback device and its control system. As a result, the difference threshold of the sensory feedback device was 0.59 N/mm.

1999 ◽  
Vol 13 (4) ◽  
pp. 234-244
Author(s):  
Uwe Niederberger ◽  
Wolf-Dieter Gerber

Abstract In two experiments with four and two groups of healthy subjects, a novel motor task, the voluntary abduction of the right big toe, was trained. This task cannot usually be performed without training and is therefore ideal for the study of elementary motor learning. A systematic variation of proprioceptive, tactile, visual, and EMG feedback was used. In addition to peripheral measurements such as the voluntary range of motion and EMG output during training, a three-channel EEG was recorded over Cz, C3, and C4. The movement-related brain potential during distinct periods of the training was analyzed as a central nervous parameter of the ongoing learning process. In experiment I, we randomized four groups of 12 subjects each (group P: proprioceptive feedback; group PT: proprioceptive and tactile feedback; group PTV: proprioceptive, tactile, and visual feedback; group PTEMG: proprioceptive, tactile, and EMG feedback). Best training results were reported from the PTEMG and PTV groups. The movement-preceding cortical activity, in the form of the amplitude of the readiness potential at the time of EMG onset, was greatest in these two groups. Results of experiment II revealed a similar effect, with a greater training success and a higher electrocortical activation under additional EMG feedback compared to proprioceptive feedback alone. Sensory EMG feedback as evaluated by peripheral and central nervous measurements appears to be useful in motor training and neuromuscular re-education.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 870
Author(s):  
Md Rasedul Islam ◽  
Md Assad-Uz-Zaman ◽  
Brahim Brahmi ◽  
Yassine Bouteraa ◽  
Inga Wang ◽  
...  

The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human–robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises, depending on the type, level, and degree of impairments. This work focused on designing and developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called ‘u-Rob’ that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper arm forces is also absent in the existing devices. This research work aimed to develop an innovative sensorized upper arm cuff to measure the wearer’s interaction forces in the upper arm. A PID control technique was implemented for both joint-based and end-point exercises. The experimental results validated both types of functionality of the developed robot.


2018 ◽  
Vol 218 ◽  
pp. 02007
Author(s):  
Wahyudi ◽  
Sela Martasia ◽  
Budi Setiyono ◽  
Iwan Setiawan

Auto-tuning relay feedback is one of the control techniques, which is used to solve the non-linear, long delay time, and disturbance's problems. This control technique is the development of Ziegler-Nichols that can be done automatically without doing system modeling. In this paper, auto-tuning relay feedback is used in the control system response to optimization of Shell Heavy Oil Fractionator (SHOF) system so the output of product composition as expected. SHOF is a distillation column type used to separate crude oil into desired products based on the difference in the boiling point of each product. PI regulators of relay feedback are used to control the valves on the SHOF with three inputs and three outputs that has been decoupled. Based on the tests, the average values of IAE at top end point composition (Y1) obtained with disturbance and no disturbance are 83.17 and 10.933, respectively. At the side end point composition (Y2), the average values of IAE with disturbance and no disturbance are obtained respectively, 336.38 and 42.3467. The average values of IAE at bottom reflux temperature (Y3) with disturbance and no disturbance are obtained 0.15 and 0.13, respectively.


1985 ◽  
Vol 1 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Ralph Mann ◽  
John Herman

Selected kinematic variables in the performance of the Gold and Silver medalists and the eighth-place finisher in the men's 200-meter sprint final at the 1984 Summer Olympic Games were investigated. Cinematographic records were obtained for all track running events at the Games, with the 200-meter performers singled out for initial analysis. In this race, sagittal view filming records (100 fps) were collected at the middle (125-meter mark) and end (180-meter mark) of the performance. Computer-generated analysis variables included both direct performance variables (body velocity, stride rate, etc.) and upper and lower body kinematics (upper arm position, lower leg velocity, etc.) that have previously been utilized in the analysis of elite athlete sprinters. The difference in place finish was related to the performance variables body horizontal velocity (direct), stride rate (direct), and support time (indirect). The critical body kinematics variables related to success included upper leg angle at takeoff (indirect), upper leg velocity during support (direct), lower leg velocity at touchdown (direct), foot to body touchdown distance (indirect), and relative foot velocity at touchdown.


2016 ◽  
Vol 32 (6) ◽  
pp. 371-375 ◽  
Author(s):  
Diana Brixner ◽  
Eli O. Meltzer ◽  
Kellie Morland ◽  
Cathryn A. Carroll ◽  
Ullrich Munzel ◽  
...  

Objectives: Various minimal clinically important difference (MCID) threshold estimation techniques have been applied to seasonal allergic rhinitis (SAR). The objectives of this study are to (i) assess the difference in magnitude of alternative SAR MCID threshold estimates and (ii) evaluate the impact of alternative MCID estimates on health technology assessment (HTA).Methods: Data describing change from baseline of the reflective Total Nasal Symptom Score (rTNSS) for four intranasal SAR treatments were obtained from United States Food and Drug Administration-approved prescribing information. Treatment effects were then compared with anchor-based MCID thresholds derived by Barnes et al. and thresholds obtained from an Agency for Healthcare Research and Quality (AHRQ) panel.Results: The change in rTNSS score from baseline, represented as the average of the twice-daily recorded scores of the rTNSS, was -2.1 (p < .001) for azelastine hydrochloride 0.10%, 1.35 (p = .014) for ciclesonide, and -1.47 (p < .001) for fluticasone furoate. The change in the rTNSS score from baseline, represented by sum of the AM and PM score, was -2.7 for MP-AzeFlu (p < .001). The rTNSS change from baseline for each product was compared with anchor-based MCID threshold and the AHRQ panel estimates. Comparison of the observed treatment effect to the anchor-based and AHRQ panel MCID thresholds results in different conclusions, with clinically important differences being inferred when anchor-based estimates serve as the reference point.Conclusion: The AHRQ panel MCID threshold for the rTNSS was twelve times larger than the anchor-based estimates resulting in conflicting recommendations on whether different SAR treatments provide clinically meaningful benefit.


2018 ◽  
Vol 44 (3) ◽  
pp. 190-194 ◽  
Author(s):  
Vanessa Pereira Lima ◽  
Fabiana Damasceno Almeida ◽  
Tania Janaudis-Ferreira ◽  
Bianca Carmona ◽  
Giane Amorim Ribeiro-Samora ◽  
...  

ABSTRACT Objective: To determine reference values for the six-minute pegboard and ring test (6PBRT) in healthy adults in Brazil, correlating the results with arm length, circumference of the upper arm/forearm of the dominant arm, and the level of physical activity. Methods: The participants (all volunteers) performed two 6PBRTs, 30 min apart. They were instructed to move as many rings as possible in six minutes. The best test result was selected for data analysis. Results: The sample comprised 104 individuals, all over 30 years of age. Reference values were reported by age bracket. We found that age correlated with 6PBRT results. The number of rings moved was higher in the 30- to 39-year age group than in the > 80-year age group (430.25 ± 77.00 vs. 265.00 ± 65.75), and the difference was significant (p < 0.05). The 6PBRT results showed a weak, positive correlation with the level of physical activity (r = 0.358; p < 0.05) but did not correlate significantly with any other variable studied. Conclusions: In this study, we were able to determine reference values for the 6PBRT in healthy adults in Brazil. There was a correlation between 6PBRT results and age.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bo Zeng ◽  
Hongwei Liu ◽  
Hongzhou Song ◽  
Zhe Zhao ◽  
Shaowei Fan ◽  
...  

Purpose The purpose of this paper is to design a multi-sensory anthropomorphic prosthetic hand and a grasping controller that can detect the slip and automatically adjust the grasping force to prevent the slip. Design/methodology/approach To improve the dexterity, sensing, controllability and practicability of a prosthetic hand, a modular and multi-sensory prosthetic hand was presented. In addition, a slip prevention control based on the tactile feedback was proposed to improve the grasp stability. The proposed controller identifies slippages through detecting the high-frequency vibration signal at the sliding surface in real time and the discrete wavelet transform (DWT) was used to extract the eigenvalues to identify slippages. Once the slip is detected, a direct-feedback method of adjusting the grasp force related with the sliding times was used to prevent it. Furthermore, the stiffness of different objects was estimated and used to improve the grasp force control. The performances of the stiffness estimation, slip detection and slip control are experimentally evaluated. Findings It was found from the experiment of stiffness estimation that the accuracy rate of identification of the hard metal bottle could reach to 90%, while the accuracy rate of identification of the plastic bottles could reach to 80%. There was a small misjudgment rate in the identification of hard and soft plastic bottles. The stiffness of soft plastic bottles, hard plastic bottles and metal bottles were 0.64 N/mm, 1.36 N/mm and 32.55 N/mm, respectively. The results of slip detection and control show that the proposed prosthetic hand with a slip prevention controller can fast and effectively detect and prevent the slip for different disturbances, which has a certain application prospect. Practical implications Due to the small size, low weight, high integration and modularity, the prosthetic hand is easily applied to upper-limb amputees. Meanwhile, the method of the slip prevention control can be used for upper-limb amputees to complete more tasks stably in daily lives. Originality/value A multi-sensory anthropomorphic prosthetic hand is designed, and a method of stable grasps control based on slip detection by a tactile sensor on the fingertip is proposed. The method combines the stiffness estimation of the object and the real-time slip detection based on DWT with the design of the proportion differentiation robust controller based on a disturbance observer and the force controller to achieve slip prevention and stable grasps. It is verified effectively by the experiments and is easy to be applied to commercial prostheses.


Sign in / Sign up

Export Citation Format

Share Document