scholarly journals Inter-Module Physical Interactions: A Force-Transmissive Modular Structure for Whole-Body Robot Motion

2021 ◽  
Vol 33 (5) ◽  
pp. 1190-1203
Author(s):  
Shiqi Yu ◽  
◽  
Yoshihiro Nakata ◽  
Yutaka Nakamura ◽  
Hiroshi Ishiguro

Robots are required to be significantly compliant and versatile to work in unstructured environments. In a number of studies, robots have positively exploited the environments during interactions and completed tasks from a morphological viewpoint. Modular robots can help realize real-world adaptive robots. Researchers have been investigating the actuation, coupling, and communication mechanisms among these robots to realize versatility. However, the diverse force transmission among modules needs to be further studied to achieve the adaptive whole-body dynamics of a robot. In this study, we fabricated a modular robot and proposed the realization of force transmission on this robot, by constructing fluid transferable network systems on the actuation modules. By exploiting the physical property variations of the modular robot, our experimental results prove that the robot’s motion can be changed by switching the connection pattern of the system.

Author(s):  
Robert O. Ambrose ◽  
Delbert Tesar

Abstract The ability to reconfigure automation equipment will reduce the manufacturing costs of obsolesence, training and maintenance while allowing for a faster response to changes in the product line. A modular philosophy will give the user these advantages, but only if based on a common connection standard. A mechanical connection was selected for the UT Modular Robotics Testbed and used in the designs of four robot joint modules and nine robot link modules. The standard was also used for assecories, such as the testand, loading fixtures and endeffectors. Three years of experiments with this connection standard are reviewed, and used as the basis for new connection designs. Experiments using multiple modules assembled as dextrous robots, as well as experiments focusing on the connection itself, will be described. Goals for future connection standards include designs with upward compatibility, combinations of both mechanical and electrical fittings, and robot triendly constraints that allow for automated or remote assembly of modular robots.


2020 ◽  
Vol 17 (3) ◽  
pp. 427-435
Author(s):  
Mohamed Khalil Mezghiche ◽  
Noureddine Djedi

Purpose The purpose of this study is to explore using real-observation quantum genetic algorithms (RQGAs) to evolve neural controllers that are capable of controlling a self-reconfigurable modular robot in an adaptive locomotion task. Design/methodology/approach Quantum-inspired genetic algorithms (QGAs) have shown their superiority against conventional genetic algorithms in numerous challenging applications in recent years. The authors have experimented with several QGAs variants and real-observation QGA achieved the best results in solving numerical optimization problems. The modular robot used in this study is a hybrid simulated robot; each module has two degrees of freedom and four connecting faces. The modular robot also possesses self-reconfiguration and self-mobile capabilities. Findings The authors have conducted several experiments using different robot configurations ranging from a single module configuration to test the self-mobile property to several disconnected modules configuration to examine self-reconfiguration, as well as snake, quadruped and rolling track configurations. The results demonstrate that the robot was able to perform self-reconfiguration and produce stable gaits in all test scenarios. Originality/value The artificial neural controllers evolved using the real-observation QGA were able to control the self-reconfigurable modular robot in the adaptive locomotion task efficiently.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2971 ◽  
Author(s):  
Xuanyang Shi ◽  
Junyao Gao ◽  
Yizhou Lu ◽  
Dingkui Tian ◽  
Yi Liu

Biped robots are similar to human beings and have broad application prospects in the fields of family service, disaster rescue and military affairs. However, simplified models and fixed center of mass (COM) used in previous research ignore the large-scale stability control ability implied by whole-body motion. The present paper proposed a two-level controller based on a simplified model and whole-body dynamics. In high level, a model predictive control (MPC) controller is implemented to improve zero moment point (ZMP) control performance. In low level, a quadratic programming optimization method is adopted to realize trajectory tracking and stabilization with friction and joint constraints. The simulation shows that a 12-degree-of-freedom force-controlled biped robot model, adopting the method proposed in this paper, can recover from a 40 Nm disturbance when walking at 1.44 km/h without adjusting the foot placement, and can walk on an unknown 4 cm high stairs and a rotating slope with a maximum inclination of 10°. The method is also adopted to realize fast walking up to 6 km/h.


2011 ◽  
Vol 133 (09) ◽  
pp. 48-51
Author(s):  
Harry H. Cheng ◽  
Graham Ryland ◽  
David Ko ◽  
Kevin Gucwa ◽  
Stephen Nestinger

This article discusses the advantages of a modular robot that can reassemble itself for different tasks. Modular robots are composed of multiple, linked modules. Although individual modules can move on their own, the greatest advantage of modular systems is their structural reconfigurability. Modules can be combined and assembled to form configurations for specific tasks and then reassembled to suit other tasks. Modular robotic systems are also very well suited for dynamic and unpredictable application areas such as search and rescue operations. Modular robots can be reconfigured to suit various situations. Quite a number of modular robotic system prototypes have been developed and studied in the past, each containing unique geometries and capabilities. In some systems, a module only has one degree of freedom. In order to exhibit practical functionality, multiple interconnected modules are required. Other modular robotic systems use more complicated modules with two or three degrees of freedom. However, in most of these systems, a single module is incapable of certain fundamental locomotive behaviors, such as turning.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Daisuke Yamada ◽  
Alperen Değirmenci ◽  
Robert D. Howe

Abstract To characterize the dynamics of internal soft organs and external anatomical structures, this paper presents a system that combines medical ultrasound imaging with an optical tracker and a vertical exciter that imparts whole-body vibrations on seated subjects. The spatial and temporal accuracy of the system was validated using a phantom with calibrated internal structures, resulting in 0.224 mm maximum root-mean-square (r.m.s.) position error and 13 ms maximum synchronization error between sensors. In addition to the dynamics of the head and sternum, stomach dynamics were characterized by extracting the centroid of the stomach from the ultrasound images. The system was used to characterize the subject-specific body dynamics as well as the intrasubject variabilities caused by excitation pattern (frequency up-sweep, down-sweep, and white noise, 1–10 Hz), excitation amplitude (1 and 2 m/s2 r.m.s.), seat compliance (rigid and soft), and stomach filling (empty and 500 mL water). Human subjects experiments (n = 3) yielded preliminary results for the frequency response of the head, sternum, and stomach. The method presented here provides the first detailed in vivo characterization of internal and external human body dynamics. Tissue dynamics characterized by the system can inform design of vehicle structures and adaptive control of seat and suspension systems, as well as validate finite element models for predicting passenger comfort in the early stages of vehicle design.


Sign in / Sign up

Export Citation Format

Share Document