scholarly journals SIMULATION OF THE MACHINED SURFACE AFTER END MILLING WITH SELF-OSCILLATIONS

Author(s):  
Sergei Dyadya ◽  
Yelena Kozlova ◽  
Anton Germashev ◽  
Viktor Logominov

Thin-walled parts are widely used in the aviation industry. It is mainly carried out with end mills and is accompanied by self-oscillation during rough milling. They negatively affect the quality of the machined surface. Therefore, it is important to model it taking into account the dynamics of the milling process to predict the accuracy. In the early works of the authors, the mechanism of the profile forming of the machined surface was determined. In this case, the identity of the shape of the cutting surface and the oscillogram of part’s oscillations during milling is taken as a basis. The first wave of self-oscillations takes part in the shaping of the machined surface during cut-up milling with self-oscillation, and during cut-down milling - the last wave. The change in the distances of the cut depressions to the position of the elastic equilibrium of the part is periodically repeated from the maximum value to the minimum. Based on this, when modeling the waviness pitch of the machined surface after cut-up milling, it is necessary to know the feed rate and how many cuts were made by the tool from the largest to the smallest depression. When modeling the machined surface after cut-down milling, you need to know the length of the cutting surface. It is calculated based on cutting speed and cutting time. The formula for determining the waviness pitch after cut-down milling is derived taking into account the tool feed. The waviness height of the machined surface after cut-up and cut-down milling is determined as the difference between the largest and smallest depressions. To determine the size of the pitch and the height of the waviness, formulas are derived for converting electrical and time values of oscillograms into linear ones. These formulas also allow you to determine areas of the oscillogram with oscillations of the part during cutting and the resulting surface areas on the profilogram. The methods for modeling machined surfaces were tested after cut-up and cut-down milling with self-oscillation. In this case, the pitch and height of the waviness on the profilograms were compared with those calculated from the results of measurements of the oscillograms. Based on their analysis, refined formulas for calculating the waviness height have been derived. The error between the measurements of the waviness pitch and height and the calculated values is within 6%.

2012 ◽  
Author(s):  
Che Hassan Che Haron ◽  
Andanastuti Muchtar ◽  
Nik Faizu Nik Kundor

Projek ini dijalankan bertujuan untuk mengkaji kesan proses pengisaran terhadap keutuhan permukaan keluli perkakas D2. Dalam kajian ini, keluli perkakas kerja sejuk AISI D2 yang telah dikeraskan kepada 62 HRC dimesin menggunakan sisip karbida bersalut CVD boleh indeks yang dipegang oleh perkakas pengisaran hujung berdiameter 20 mm. Siri–siri ujian dijalankan dalam keadaan kering. Penilaian ke atas permukaan yang dimesin melibatkan kekasaran permukaan dan analisis mikrostruktur. Keputusan kajian menunjukkan bahawa tiada hubungan yang jelas di antara variasi kelajuan pemotongan dan suapan terhadap kekasaran permukaan. Umumnya, permukaan yang dihasilkan adalah sangat licin dengan nilai Ra berada dalam julat 0.10 μm – 0.43 μm dan analisis permukaan pada sampel–sampel ujikaji juga mendapati hampir tiada perubahan dapat dikesan pada mikrostruktur bahagian bawah permukaan yang dimesin. Walau bagaimanapun, pada kelajuan pemotongan tertinggi (160 m/min) dan suapan yang tinggi (0.02 mm/sisip), terdapat kesan termampat dan terherot pada mikrostruktur pada kedalaman yang sangat cetek iaitu lebih kurang 2.2 μm dari permukaan termesin. Kata kunci: Keutuhan permukaan, keluli perkakas terkeras, pengisaran hujung, mikrostruktur, perkakas karbida bersalut The effect of milling process on the surface integrity of newly machined surface of D2 tool steel is presented. The hardened AISI D2 (62 HRC) was machined under dry cutting conditions using a 20 mm diameter end–milling tool with indexable CVD coated carbide insert. Analyses revealed that the variation in cutting speeded and feed did not significantly affect the surface roughness of the machined surface. Generally, the surfaces produced are very smooth with Ra values in the range of 0.1 – 0.43 μm, and studies showed almost no microstructure alteration on the machined surfaces. However, at the highest cutting condition, i.e. a cutting speed of 160 m/min, and feed of 0.02 mm/tooth, some compression and distortion effects were detected on the microstructure at the very shallow depth of approximately 2.2 μm from the machined surface. Key words: Surface integrity, hardened tool steel, end-milling, microstructure, coated carbide tool


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7143
Author(s):  
Anshan Zhang ◽  
Caixu Yue ◽  
Xianli Liu ◽  
Steven Y. Liang

Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surface adhered damages will form on the machined surface under certain tool postures. It is determined that the formation of surface adhered damage is related to the material adhesion near the cutting edge and the cutting-into/out position within the tool per-rotation cycle. In order to analyze the cutting-into/out process more clearly under different tool postures, the projection models of the cutting edge and the cutter workpiece engagement on the contact plane are established; thus, the complex geometry problem of space is transformed into that of plane. Combined with the case of cutting-into/out, chip morphology, and surface morphology, the formation mechanism of surface adhered damage is analyzed. The analysis results show that the adhered damage can increase the height parameters Sku, Sz, Sp, and Sv of surface topographies. Sz, Sp, and Sv of the normal machined surface without damage (Sku ≈ 3) are about 4–6, 2–3, and 2–3 μm, while Sz, Sp, and Sv with adhered damage (Sku > 3) can reach about 8–20, 4–14, and 3–6 μm in down-milling and 10–25, 7–18, and 3–7 μm in up-milling. The feed direction should be selected along the upper left (Q2: β∈[0°, 90°]) or lower left (Q3: β∈[90°, 180°]) to avoid surface adhered damage in the down-milling process. For up-milling, the feed direction should be selected along the upper right (Q1: β∈(−90°, 0°]) or upper left (Q2: β∈[0°, 90°)).


2018 ◽  
Vol 8 (1) ◽  
pp. 162-169 ◽  
Author(s):  
Paweł Bałon ◽  
Edward Rejman ◽  
Robert Smusz ◽  
Janusz Szostak ◽  
Bartłomiej Kiełbasa

Abstract High speed milling (HSM) is currently one of the most important technologies used in the aviation industry, especially concerning aluminium alloys. The difference between HSM and other milling techniques is the ability to select cutting parameters – depth of the cut layer, feed rate, and cutting speed, in order to simultaneously ensure high quality, precision of the machined surface, and high machining efficiency, all of which shorten the manufacturing process of the integral components. By implementing the HSM technology, it is possible to manufacture very complex integral thin-walled aerial parts from the full quantity of the raw material. At present, aircraft structures are designed to mainly consist of integral elements which have been produced by welding or riveting of component parts in technologies utilized earlier in the production process. Parts such as ribs, longitudinals, girders, frames, coverages of fuselage and wings can all be categorized as integral elements. These parts are assembled into larger assemblies after milling. The main aim of the utilized treatments, besides ensuring the functional criterion, is obtaining the best ratio of strength to construction weight. Using high milling speeds enables economical manufacturing of integral components by reducing machining time, but it also improves the quality of the machined surface. It is caused by the fact that cutting forces are significantly lower for high cutting speeds than for standard machining techniques.


2010 ◽  
Vol 126-128 ◽  
pp. 773-778
Author(s):  
Yung Tien Liu ◽  
Neng Hsin Chiu ◽  
Yen Chun Lin ◽  
Chih Liang Lai ◽  
Yu Fu Lin ◽  
...  

Micro ball-end milling process features the ability of machining complex surfaces, precision machining accuracy, and excellent machined surface roughness. However, because the diameter of a micro milling tool is very small, a rapid progress of tool wear or even tool breakage usually happens when machining a high-strength hardened mold steel using improper machining parameters. As a result, the machining cost would rise due to the quality defect in machined workpiece. In this study, to investigate how the machining parameters affect the cutting behaviors, a series of experiments using micro CBN ball-end mills with a diameter of 0.5 mm were performed to cut the SKD11 mold steel with hardness of HRC 61. The machining parameters are selected as the feeding speed (f) being 840, 960 and 1,080 mm/min, depth of cut (ap) being 30, 45, 60 μm, and spindle speed (vs) being fixed as 30,000 rpm. According to the experimental results, the measured three-axis cutting forces, flank wears, and surface roughness of machined workpiece are highly related to the cutting length. It is expected that the measured results can be used to construct a performance function of a micro ball-end tool. With referring to the performance function, the tool life can be well expected, and thus a progress in machining efficiency without tool failure can be achieved.


2019 ◽  
Vol 23 (6 Part A) ◽  
pp. 3651-3660
Author(s):  
Jelena Baralic ◽  
Nedeljko Ducic ◽  
Andjelija Mitrovic ◽  
Pavel Kovac ◽  
Miroslav Lucic

Milling is one of the most important and most complex cutting machining processes. During the milling process, the cross-section of the chip is variable. Also, all milling operations are interrupted processes. The cutting edge of the mill tooth periodically enters and exits from the contact with the workpiece, which leads to periodic heating and cooling during the machining. This periodic change of temperature significantly affects the process of tool wear and therefore the quality of the machined surface. This paper aims at modeling and optimizing the parameters of the machining process to achieve the minimum temperature. In order to perform optimization, it was necessary to perform temperature measurements for the various parameters of the machining process. An infrared camera was used for the temperature measurement. Then, based on the measured values, the mathematical modeling of the temperature was performed depending on the cutting speed, the feed rate and the depth of cut. This model is then optimized using two different optimization techniques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Young Jeong ◽  
Je-Ryung Lee ◽  
Hyeonjin Park ◽  
Joonkyo Jung ◽  
Doo-Sun Choi ◽  
...  

AbstractMicrowave absorbers using conductive ink are generally fabricated by printing an array pattern on a substrate to generate electromagnetic fields. However, screen printing processes are difficult to vary the sheet resistance values for different regions of the pattern on the same layer, because the printing process deposits materials at the same height over the entire surface of substrate. In this study, a promising manufacturing process was suggested for engraved resistive double square loop arrays with ultra-wide bandwidth microwave. The developed manufacturing process consists of a micro-end-milling, inking, and planing processes. A 144-number of double square loop array was precisely machined on a polymethyl methacrylate workpiece with the micro-end-milling process. After engraving array structures, the machined surface was completely covered with the developed conductive carbon ink with a sheet resistance of 15 Ω/sq. It was cured at room temperature. Excluding the ink that filled the machined double square loop array, overflowed ink was removed with the planing process to achieve full filled and isolated resistive array patterns. The fabricated microwave absorber showed a small radar cross-section with reflectance less than − 10 dB in the frequency band range of 8.0–14.6 GHz.


2011 ◽  
Vol 328-330 ◽  
pp. 560-564
Author(s):  
Ba Sheng Ouyang ◽  
Guo Xiang Lin ◽  
Yong Hui Tang

Cutting forces and machining error in contouring of concave and convex surfaces using helical ball end mills are theoretically investigated. The cutting forces are evaluated based on the theory of oblique cutting. The machining errors resulting from the tool deflections due to these forces are evaluated at various points of the machined surface. The influence of various cutting conditions and cutting modes on machining error is investigated and discussed.


2021 ◽  
Vol 5 (2) ◽  
pp. 48
Author(s):  
Jonas Holmberg ◽  
Anders Wretland ◽  
Johan Berglund ◽  
Tomas Beno ◽  
Anton Milesic Karlsson

The planned material volume to be removed from a blank to create the final shape of a part is commonly referred to as allowance. Determination of machining allowance is essential and has a great impact on productivity. The objective of the present work is to use a case study to investigate how a prior rough milling operation affects the finish machined surface and, after that, to use this knowledge to design a methodology for how to assess the machining allowance for subsequent milling operations based on residual stresses. Subsequent milling operations were performed to study the final surface integrity across a milled slot. This was done by rough ceramic milling followed by finish milling in seven subsequent steps. The results show that the up-, centre and down-milling induce different stresses and impact depths. Employing the developed methodology, the depth where the directional influence of the milling process diminishes has been shown to be a suitable minimum limit for the allowance. At this depth, the plastic flow causing severe deformation is not present anymore. It was shown that the centre of the milled slot has the deepest impact depth of 500 µm, up-milling caused an intermediate impact depth of 400 µm followed by down milling with an impact depth of 300 µm. With merged envelope profiles, it was shown that the effects from rough ceramic milling are gone after 3 finish milling passes, with a total depth of cut of 150 µm.


1970 ◽  
Vol 2 (1) ◽  
Author(s):  
A.K.M.N. Amin, M.A. Rizal, and M. Razman

Machine tool chatter is a dynamic instability of the cutting process. Chatter results in poor part surface finish, damaged cutting tool, and an irritating and unacceptable noise. Exten¬sive research has been undertaken to study the mechanisms of chatter formation. Efforts have been also made to prevent the occurrence of chatter vibration. Even though some progress have been made, fundamental studies on the mechanics of metal cutting are necessary to achieve chatter free operation of CNC machine tools to maintain their smooth operating cycle. The same is also true for Vertical Machining Centres (VMC), which operate at high cutting speeds and are capable of offering high metal removal rates. The present work deals with the effect of work materials, cutting conditions and diameter of end mill cutters on the frequency-amplitude characteristics of chatter and on machined surface roughness. Vibration data were recorded using an experimental rig consisting of KISTLER 3-component dynamometer model 9257B, amplifier, scope meters and a PC.  Three different types of vibrations were observed. The first type was a low frequency vibration, associated with the interrupted nature of end mill operation. The second type of vibration was associated with the instability of the chip formation process and the third type was due to chatter. The frequency of the last type remained practically unchanged over a wide range of cutting speed.  It was further observed that chip-tool contact processes had considerable effect on the roughness of the machined surface.Key Words: Chatter, Cutting Conditions, Stable Cutting, Surface Roughness.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Yunn-Shiuan Liao ◽  
Tsung-Hsien Li ◽  
Yi-Chen Liu

Abstract Application of liquid carbon dioxide to improve cutting performance in micro-end milling of Ti-6Al-4V titanium alloy was proposed in this study. It was found that the machined roughness decreased with the cutting speed as observed in the conventional cutting, when a 0.5 mm diameter end milling cutter was used in dry cutting. But, the tiny and shattered chips produced by the use of 0.3 mm diameter cutter could adhere on the machined surface and deteriorate surface finish, if the cutting speed was higher than 40 m/min. Cutting temperature was effectively decreased by applying liquid carbon dioxide during micromilling, which in turn reduced the amount of chips adhering on the machined surface and lowered flank wear. The surface roughness Ra at a cutting speed of 70 m/min was improved from 0.09 μm under dry cutting to 0.04 μm under the liquid carbon dioxide assisted cutting condition. And there were no flank wear and very few burrs left on the machined surface for the condition used in the experiment. The height of the burrs was only 25% of that under dry cutting. More, minimum quantity lubrication (MQL) was proposed to be applied together with the liquid carbon dioxide to enhance lubrication effect. It was noted that the machined surface roughness was further decreased by 15% as compared with that when the liquid carbon dioxide was applied alone. The height of burrs was reduced from 32 μm to 16 μm.


Sign in / Sign up

Export Citation Format

Share Document