scholarly journals DISSIPATIVE OSCILLATORS’ POWER CHARACTERISTIC NON-SYMMETRY DYNAMIC EFFECT

Author(s):  
Vasiliy Olshanskiy ◽  
Stanislav Olshanskiy

The features of motion of a non-linear oscillator under the instantaneous force pulse loading are studied. The elastic characteristic of the oscillator is given by a polygonal chain consisting of two linear segments. The focus of the paper is on the influence of the dissipative forces on the possibility of occurrence of the elastic characteristic non-symmetry dynamic effect, studied previously without taking into account the influence of these forces. Four types of drag forces are considered, namely linear viscous friction, Coulomb dry friction, position friction, and quadratic viscous resistance. For the cases of linear viscous friction and Coulomb dry friction the analytical solutions of the differential equation of oscillations are found by the fitting method and the formulae for computing the swings are derived. The conditions on the parameters of the problem are determined for which the elastic characteristic non-symmetry dynamic effect occurs in the system. The conditions for the effect to occur in the system with the position friction are derived from the energy relations without solving the differential equation of motion. In the case of quadratic viscous friction the first integral of the differential equation of motion is given by the Lambert function of either positive or negative argument depending on the value of the initial velocity. The elastic characteristic non-symmetry dynamic effect is shown to occur for small initial velocities, whereas it is absent from the system when the initial velocities are sufficiently large. The values of the Lambert function are proposed to be computed by either linear interpolation of the known data or approximation of the Lambert function by elementary functions using asymptotic formulae which approximation error is less than 1%. The theoretical study presented in the paper is followed up by computational examples. The results of the computations by the formulae proposed in the paper are shown to be in perfect agreement with the results of numerical integration of the differential equation of motion of the oscillator using a computer.

Author(s):  
Vasyl Olshanskiy ◽  
Maksym Slipchenko ◽  
Igor Tverdokhlib ◽  
Ihor Kupchuk

The unsteady oscillations of a dissipative oscillator caused by an instantaneous impulse of the force are described. The case is considered when the dissipative force consists of quadratic viscous resistance and dry friction, and the theoretical results are generalized to the case of the sum of three forces. The third is the force of positional friction. Formulas for calculating the ranges of oscillations have been constructed In this case, the Lambert function of negative and positive arguments is used. It is a tabulated special function. Its value can also be calculated using its known approximations in elementary functions. It is shown that, due to the action of the dissipative force, the process of post-pulse oscillations consists of a finite number of cycles and is limited in time. This is due to the presence of dry friction among the resistance components. Examples of calculations that illustrate the possibilities of the stated theory are given. In order to check the reliability of the derived calculation formulas, numerical computer integration of the differential equation of motion was also carried out. The convergence of the numerical results obtained by two different methods is shown. Thus, it has been confirmed that with the help of analytical solutions it is possible to find the extreme displacements of the oscillator without numerically solving its nonlinear differential equation of motion. Using Lambert function and the first integral of the equation of motion made it possible to derive precise calculation formulas for determining the range of oscillations caused by the pulsed load of the oscillator. The derived formulas are suitable for calculating the value of the instantaneous impulse applied to the oscillator, which refers to the inverse problems of mechanics. Thus, by measuring the maximum displacement of the oscillator, it is possible to identify the initial velocity or instantaneous impulse applied to the oscillator. The performed numerical computer integration of the output differential equation confirmed the adequacy of the obtained analytical solutions, which concern not only direct, but also inverse problems of dynamics.


Author(s):  
Vasil Olshanskiy ◽  
Stanislav Olshanskiy ◽  
Maksym Slipchenko

The motion of an oscillator instantaneously loaded with a constant force under conditions of nonlinear external resistance, the components of which are quadratic viscous resistance, dry and positional friction, are considered. Using the first integral of the equation of motion and the Lambert function, compact formulas for calculating the ranges of oscillations are derived. In order to simplify the search for the values of the Lambert function, asymptotic formulas are given that, with an error of less than one percent, express this special function in terms of elementary functions. It is shown that as a result of the action of the resistance force, including dry friction, the oscillation process has a finite number of cycles and is limited in time, since the oscillator enters the stagnation region, which is located in the vicinity of the static deviation of the oscillator caused by the applied external force. The system dynamic factor is less than two. Examples of calculations that illustrate the possibilities of the stated theory are considered. In addition to analytical research, numerical computer integration of the differential equation of motion was carried out. The complete convergence of the results obtained using the derived formulas and numerical integration is established, which confirms that using analytical solutions it is possible to determine the extreme displacements of the oscillator without numerical integration of the nonlinear differential equation. To simplify the calculations, the literature is also recommended, where tables of the Lambert function are printed, allowing you to find its value for interpolating tabular data. Under conditions of nonlinear external resistance, the components of which are quadratic viscous resistance, dry and positional friction, the process of oscillations of an instantly loaded oscillator has a limited number of cycles. The dependences obtained in this work using the Lambert function make it possible to determine the range of oscillations without numerical integration of the nonlinear differential equation of motion both for an oscillator with quadratic viscous resistance and dry friction, and for an oscillator with quadratic resistance and positional and dry friction. Keywords: nonlinear oscillator, instantaneous loading, quadratic viscous resistance, Lambert function, oscillation amplitude.


Author(s):  
Vasyl Olshanskiy ◽  
Maksym Slipchenko ◽  
Oleksandr Spolnik ◽  
Mykhailo Zamrii

The article is devoted to the derivation of formulas for calculating the ranges of free damped oscillations of a double nonlinear oscillator. Using the Lambert function and the first integral of the nonlinear differential equation of motion, formulas are derived for calculating the ranges of free damped oscillations of a linearly elastic oscillator under the combined action of the forces of quadratic viscous resistance and Coulomb dry friction. The calculations involve a table of the specified special function of the negative argument. It is shown that the presence of viscous resistance reduces the duration of free oscillations to a complete stop of the oscillator. The set dynamics problem is also approximately solved by the energy balance method, and a numerical integration of the nonlinear differential equation of motion on a computer is carried out. The satisfactory convergence of the numerical results obtained in various ways confirmed the suitability of the derived closed formulas for engineering calculations. In addition to calculating the magnitude of the oscillations, the energy balance method is also used for an approximate solution of the inverse problem of dynamics, by identifying the values of the coefficient of quadratic resistance and dry friction force in the presence of an experimental vibrogram of free damped oscillations. An example of identification is given. This information on friction is needed to calculate forced oscillations, especially under resonance conditions. It is noted that from the obtained results, in some cases, well-known formulas follow, where the quadratic viscous resistance is not associated with dry friction.


Author(s):  
Vasiliy Olshanskii ◽  
Stanislav Olshanskii

The free oscillations of a system with one degree of freedom are considered under the assumption that the elasticity of a spring is proportional to the cubic root of its deformation. Two forms of the analytical solution of the nonlinear differential equation of motion of the oscillator are obtained. In the first displacement of the oscillator in time is expressed in terms of incomplete elliptic integrals of the first and second kind. In the second form, the solution is expressed in terms of periodic Ateb-functions. The tables of the involved functions are made, which simplify the calculation. Formulas are also derived for calculating the oscillation periods when the oscillator is signaled or the initial deviation from the equilibrium position or the initial velocity (instantaneous pulse) in this position. The dependence of the oscillation period on the parameters of the oscillator and the initial conditions is established. Examples of calculations of oscillations are presented with the use of compiled tables of special functions and using the proposed approximations of the Ateb-functions. Comparison of numerical results obtained by different methods is made.


2014 ◽  
Vol 1030-1032 ◽  
pp. 223-227
Author(s):  
Lin Fan ◽  
Song Rong Qian ◽  
Teng Fei Ma

In order to analysis the force situation of the material which is discontinuity,we can used the new theory called peridynamics to slove it.Peridynamics theory is a new method of molecular dynamics that develops very quickly.Peridynamics theory used the volume integral equation to constructed the model,used the volume integral equation to calculated the PD force in the horizon.So It doesn’t need to assumed the material’s continuity which must assumed that use partial differential equation to formulates the equation of motion. Destruction and the expend of crack which have been included in the peridynamics’ equation of motion.Do not need other additional conditions.In this paper,we introduce the peridynamics theory modeling method and introduce the relations between peridynamics and classic theory of mechanics.We also introduce the numerical integration method of peridynamics.Finally implementation the numerical integration in prototype microelastic brittle material.Through these work to show the advantage of peridynamics to analysis the force situation of the material.


2002 ◽  
Vol 124 (4) ◽  
pp. 537-544 ◽  
Author(s):  
Gong Cheng ◽  
Jean W. Zu

In this paper, a mass-spring-friction oscillator subjected to two harmonic disturbing forces with different frequencies is studied for the first time. The friction in the system has combined Coulomb dry friction and viscous damping. Two kinds of steady-state vibrations of the system—non-stop and one-stop motions—are considered. The existence conditions for each steady-state motion are provided. Using analytical analysis, the steady-state responses are derived for the two-frequency oscillating system undergoing both the non-stop and one-stop motions. The focus of the paper is to study the influence of the Coulomb dry friction in combination with the two frequency excitations on the dynamic behavior of the system. From the numerical simulations, it is found that near the resonance, the dynamic response due to the two-frequency excitation demonstrates characteristics significantly different from those due to a single frequency excitation. Furthermore, the one-stop motion demonstrates peculiar characteristics, different from those in the non-stop motion.


Author(s):  
Vasiliy Olshansky ◽  
Stanislav Olshansky ◽  
Oleksіі Tokarchuk

The motion of an oscillatory system with one degree of freedom, described by the generalized Rayleigh differential equation, is considered. The generalization is achieved by replacing the cubic term, which expresses the dissipative strength of the equation of motion, by a power term with an arbitrary positive exponent. To study the oscillatory process involved the method of energy balance. Using it, an approximate differential equation of the envelope of the graph of the oscillatory process is compiled and its analytical solution is constructed from which it follows that quasilinear frictional self-oscillations are possible only when the exponent is greater than unity. The value of the amplitude of the self-oscillations in the steady state also depends on the value of the indicator. A compact formula for calculating this amplitude is derived. In the general case, the calculation involves the use of a gamma function table. In the case when the exponent is three, the amplitude turned out to be the same as in the asymptotic solution of the Rayleigh equation that Stoker constructed. The amplitude is independent of the initial conditions. Self-oscillations are impossible if the exponent is less than or equal to unity, since depending on the initial deviation of the system, oscillations either sway (instability of the movement is manifested) or the range decreases to zero with a limited number of cycles, which is usually observed with free oscillations of the oscillator with dry friction. These properties of the oscillatory system are also confirmed by numerical computer integration of the differential equation of motion for specific initial data. In the Maple environment, the oscillator trajectories are constructed for various values of the nonlinearity index in the expression of the viscous resistance force and a corresponding comparative analysis is carried out, which confirms the adequacy of approximate analytical solutions.


1998 ◽  
Vol 26 ◽  
pp. 277-280 ◽  
Author(s):  
J.M.N.T. Gray ◽  
Y.C. Tai

The Savage-Hutter model is generalized by including a velocity-dependent drag in addition to the usual Coulomb dry friction at the base of the avalanche. Both linear and quadratic velocity dependencies are considered, with either constant or asymptotically constant drag coefficients for large thickness h. The singular nature of the constant coefficient model for small h is demonstrated and it is shown that the asymptotic model allows the tail of the avalanche to move at a finite velocity. The inclusion of velocity drag changes the stress state in the avalanche and new earth-pressure relations are derived and investigated.


Author(s):  
Fernando Peña

This chapter addresses the numerical modeling of freestanding rigid blocks by means of a semi-discrete approach. The pure rocking motion of single rigid bodies can be easily studied with the differential equation of motion, which can be solved by numerical integration or by linearization. However, when we deal with sliding and jumping motion of rigid bodies, the mathematical formulation becomes quite complex. In order to overcome this complexity, a Semi-Discrete Model (SMD) is proposed for the study of rocking motion of rigid bodies, in which the rigid body is considered as a mass element supported by springs and dashpots, in the spirit of deformable contacts between rigid blocks. The SMD can detect separation and sliding of the body; however, initial base contacts do not change, keeping a relative continuity between the body and its base. Extensive numerical simulations have been carried out in order to validate the proposed approach.


2019 ◽  
Vol 98 (3) ◽  
pp. 1795-1806 ◽  
Author(s):  
Sergii Skurativskyi ◽  
Grzegorz Kudra ◽  
Krzysztof Witkowski ◽  
Jan Awrejcewicz

Abstract The paper is devoted to the study of harmonically forced impacting oscillator. The physical model for oscillator is a cart on a guide connected to the support with springs and excited by the stepper motor. The support also is provided with limiter of motion. The mathematical model for this system is defined with the second-order piecewise smooth differential equation. Model’s nonlinearity is connected with the incorporation of dry friction and generalized Hertz contact law. Analyzing the classical Poincare sections and inter-impact sequences obtained experimentally and numerically, the bifurcations and statistical properties of periodic, multi-periodic, and chaotic regimes were examined. The development of impact-adding regime as a new nonlinear phenomenon when the forcing frequency varies was observed.


Sign in / Sign up

Export Citation Format

Share Document