STUDI PENAMBAHAN SUPEPRPLASTCIZER PADA KUAT TEAN BETON DENGAN VARIASI FAS 0,4 – 0,5 MENGGUNAKAN AGREGAT KASAR YANG DI PECAH (SPLIT)

2020 ◽  
Vol 15 (2) ◽  
pp. 58-65
Author(s):  
Muhamad Farhan Kurniawan ◽  
Tri Mulyono ◽  
Daryati Daryati

This study aims to determine the effect of superplasticizer usage on concrete compressivestrenght with variation of water cement ratio using subdivided crude aggregates (split).This research cylindrical test object with diameter 15 cm and height 30 cm. Compressivestrength concrete design fc’ 35 MPa, with variation of water cement ratio W/C 0,4; 0,45; 0,5 andusing Superplasticizer Sikament LN materials 0,5% of the weight of cement and slump value 12 ± 2cm.The result of research showed an increase the value of concrete compressive strength withthe addition of superplasticizer. The average of concrete compressive strength without the addition ofsuperplasticizer and variation of water cement ratio W/C 0,4; 0,45; 0,5 at 28 days in a row is 36,14MPa, 34,73 MPa, 29,82 MPa. While the value of concrete compressive strength with the addition ofsuperplasticizer increase to 39,73 MPa, 37,18 MPa, 31,23 MPa.

2012 ◽  
Vol 204-208 ◽  
pp. 3895-3898 ◽  
Author(s):  
Zhen Min Cao ◽  
Zhi Gang He ◽  
Yi Yang

Shale ceramsite concrete is a kind of light weight aggregate concrete. In this paper shale ceramsite concrete compressive strength properties are studied by experimental preparation of different water cement ratio, and made an analysis of compressive strength comparatively among 7 days, 28 days, 56 days. The result shows that the rules of compressive strength of shale ceramsite concrete are in line with the general law strength of concrete, and increases with the age increasing, decreases with water cement ratio increasing, but they are not entirely linear relationship.


Author(s):  
Suhaib Bakshi

Abstract: Compressive strength of concrete is the capacity of concrete to bear loads of materials or structure sans breaking or being deformed. Specimen under compression shrinks in size whilst under tension the size elongates. Compressive strength essentially gives concept about the properties of concrete. Compressive strength relies on many aspects such as water-cement ratio, strength of cement, calidad of concrete material. Specimens are tested by compression testing machine after the span of 7 or 28 days of curing. Compressive strength of the concrete is designated by the load on the area of specimen. In this research various proportions of such aggregate mixed in preparing M 30 grade and M 40 grade of Concrete mix and the effect is studied on its compressive strength . Several research papers have been assessed to analyze the compressive strength of concrete and the effect of different zones of sand on compressive strength are discussed in this paper. Keywords: Sand, Gradation, Coarse aggregate, Compressive strength


2014 ◽  
Vol 912-914 ◽  
pp. 131-135
Author(s):  
Xiang Ping Fu ◽  
Xiao Xue Liu ◽  
Yi Ze Sun ◽  
Pei Huang ◽  
Yu Chen Li ◽  
...  

The experiment studies how the freeze-thaw cycles influence concrete compressive strength and elasticity modulus with different water-cement ratio under the air-entraining agent and zero of that value respectively. It can be found that modulus of elasticity and compressive strength of the concrete specimen reduced significantly when there is air-entraining agent; the durability of freeze-thaw resistance, however, makes great improvement; as the cement increases, both of them improves effectively. Through the comparison of concrete compressive strength and elastic modulus with different water-cement ratio and air-entraining agent, the optimal water-cement ratio and air-entraining agent were determined. The results of experiment can be used in concrete engineering design in severe cold area.


2016 ◽  
Vol 9 (3) ◽  
pp. 395-402 ◽  
Author(s):  
M. A. P. Irrigaray ◽  
R. C. de A. Pinto ◽  
I. J. Padaratz

ABSTRACT Although the ultrasonic pulse velocity (UPV) method has been extensively used to estimate concrete compressive strength, the relationship between UPV and concrete strength is mixture dependent. As a result, the applicability of this method to estimate strength is well known to be limited. Aggregate type, cement type, mixture proportions, and water-cement ratio influence such a relationship. Nevertheless, UPV and strength are both governed by cement hydration, and thus, a relationship between UPV in the cement paste phase and concrete compressive strength would be expected to exist. By not taking into account the type and volume content of aggregates, this relationship could be the same for concrete mixtures with same type of cement and water-cement ratio, regardless the aggregate type used. This study investigates the existence of such a relationship. Concrete mixtures with water-cement ratios of 0.48, 0.55 and 0.64, with different paste volumes were prepared in the laboratory. For each mixture, compressive strength and ultrasonic pulse velocity were evaluated at various ages. The UPV of each concrete phase: paste, fine aggregate, and coarse aggregate, was obtained through paste and mortar specimens. This study indicated that it is possible to establish a unique relationship between the UPV in cement paste phase and the concrete compressive strength. This unique relationship could be applied to several concrete mixtures, greatly expanding the use of the UPV method to estimate compressive strength.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 44
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
Rosely S. Cavalcanti ◽  
António C. Azevedo ◽  
Ana S. Guimarães ◽  
...  

The work presents the results of an experimental campaign carried out on concrete elements in order to investigate the potential of using artificial neural networks (ANNs) to estimate the compressive strength based on relevant parameters, such as the water–cement ratio, aggregate–cement ratio, age of testing, and percentage cement/metakaolin ratios (5% and 10%). We prepared 162 cylindrical concrete specimens with dimensions of 10 cm in diameter and 20 cm in height and 27 prismatic specimens with cross sections measuring 25 and 50 cm in length, with 9 different concrete mixture proportions. A longitudinal transducer with a frequency of 54 kHz was used to measure the ultrasonic velocities. An ANN model was developed, different ANN configurations were tested and compared to identify the best ANN model. Using this model, it was possible to assess the contribution of each input variable to the compressive strength of the tested concretes. The results indicate an excellent performance of the ANN model developed to predict compressive strength from the input parameters studied, with an average error less than 5%. Together, the water–cement ratio and the percentage of metakaolin were shown to be the most influential factors for the compressive strength value predicted by the developed ANN model.


2013 ◽  
Vol 648 ◽  
pp. 108-111
Author(s):  
Qi Jin Li ◽  
Guo Zhong Li

The construction waste was processed into recycled aggregate to produce solid construction waste brick with grade of MU20. The preparation process of recycled aggregate and the optimal value of mass ratio of water to cement (water cement ratio) and mass ratio of recycled aggregate to cement was studied. The results shows that when the water cement ratio is 0.86 and the mass ratio of recycled aggregate to cement is 5.5 and the dosage of activator is 0.25% (mass fraction with recycled aggregate), the compressive strength of sample is 22.5MPa and can be satisfied with the requirement of MU20 solid concrete brick.


2018 ◽  
Vol 8 (8) ◽  
pp. 1324 ◽  
Author(s):  
How-Ji Chen ◽  
Chung-Hao Wu

Expanded shale lightweight aggregates, as the coarse aggregates, were used to produce lightweight aggregate concrete (LWAC) in this research. At the fixed water-cement ratio, paste quantity, and aggregate volume, the effects of various aggregate gradations on the engineering properties of LWAC were investigated. Comparisons to normal-weight concrete (NWC) made under the same conditions were carried out. From the experimental results, using normal weight aggregates that follow the specification requirements (standard gradation) obtained similar NWC compressive strength to that using uniform-sized aggregates. However, the compressive strength of LWAC made using small uniform-sized aggregates was superior to that made from standard-grade aggregates. This is especially conspicuous under the low water-cement ratio. Even though the workability was affected, this problem could be overcome with developed chemical additive technology. The durability properties of concrete were approximately equal. Therefore, it is suggested that the aggregate gradation requirement of LWAC should be distinct from that of NWC. In high strength LWAC proportioning, following the standard gradation suggested by American Society for Testing and Materials (ASTM) is optional.


2013 ◽  
Vol 850-851 ◽  
pp. 847-850 ◽  
Author(s):  
Lin Chao Dai

In order to study the coal and gas outburst similar simulation experiment, coal similar material was made up based on the similarity theory. Based on the previous similar material study, the cement, sand, water, activated carbon and coal powder was selected as the raw material of similar material. Meanwhile similar material matching program with 5 factors and 6 levels was designed by using Uniform Design Method. And the physical and mechanical properties of the similar material compressive strength was measured under different proportions circumstances. The relationship between similar material and the raw materials was analyzed. The results show that choosing different materials can compound different similar materials with different requirements. And the water-cement ratio plays a decisive influence on the compressive strength of similar material. The compressive strength of similar material decreases linearly when the water-cement ratio increases.


2014 ◽  
Vol 2 (1) ◽  
pp. 75-82
Author(s):  
Elivs M. Mbadike ◽  
N.N Osadebe

In this research work, the effect of mound soil on concrete produced with river sand was investigated. A mixed proportion of 1.1.8:3.7 with water cement ratio of 0.47 were used. The percentage replacement of river sand with mound soil is 0%, 5%, 10%, 20%, 30% and 40%. Concrete cubes of 150mm x 150mm x150mm of river sand/mound soil were cast and cured at 3, 7, 28, 60 and 90 days respectively. At the end of each hydration period, the three cubes for each hydration period were crushed and their average compressive strength recorded. A total of ninety (90) concrete cubes were cast. The result of the compressive strength test for 5- 40% replacement of river sand with mound soil ranges from 24.00 -42.58N/mm2 a against 23.29-36.08N/mm2 for the control test (0% replacement).The workability of concrete produced with 5- 40% replacement of river sand with mound soil ranges from 47- 62mm as against 70mm for the control test.


Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


Sign in / Sign up

Export Citation Format

Share Document