Experimental Study on the Influence of Water Cement Ratio on the Compressive Strength of Shale Ceramsite Concrete

2012 ◽  
Vol 204-208 ◽  
pp. 3895-3898 ◽  
Author(s):  
Zhen Min Cao ◽  
Zhi Gang He ◽  
Yi Yang

Shale ceramsite concrete is a kind of light weight aggregate concrete. In this paper shale ceramsite concrete compressive strength properties are studied by experimental preparation of different water cement ratio, and made an analysis of compressive strength comparatively among 7 days, 28 days, 56 days. The result shows that the rules of compressive strength of shale ceramsite concrete are in line with the general law strength of concrete, and increases with the age increasing, decreases with water cement ratio increasing, but they are not entirely linear relationship.

Author(s):  
Suhaib Bakshi

Abstract: Compressive strength of concrete is the capacity of concrete to bear loads of materials or structure sans breaking or being deformed. Specimen under compression shrinks in size whilst under tension the size elongates. Compressive strength essentially gives concept about the properties of concrete. Compressive strength relies on many aspects such as water-cement ratio, strength of cement, calidad of concrete material. Specimens are tested by compression testing machine after the span of 7 or 28 days of curing. Compressive strength of the concrete is designated by the load on the area of specimen. In this research various proportions of such aggregate mixed in preparing M 30 grade and M 40 grade of Concrete mix and the effect is studied on its compressive strength . Several research papers have been assessed to analyze the compressive strength of concrete and the effect of different zones of sand on compressive strength are discussed in this paper. Keywords: Sand, Gradation, Coarse aggregate, Compressive strength


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chuanlin Wang ◽  
Meimei Song

The present work studies the influence of water-cement ratio and types of mixing water on the hydration process and microstructure of calcium sulphoaluminate (CSA) cement. Experimental tests on the setting time, physical properties, compressive strength, chemical shrinkage, X-ray diffraction (XRD), and scanning electron microscopy (SEM) of CSA cement paste were carried out. The XRD analysis confirmed that the main hydration product is ettringite in both freshwater and seawater mixed CSA cement with different w/c ratios. The SEM analysis and physical properties test show that both low w/c ratio and seawater can improve the microstructure of CSA cement. The test results also find out that the high w/c ratio can accelerate the hydration process, extend the setting time, lower the compressive strength, and increase the chemical shrinkage of CSA cement, and the seawater presents a similar influence except for the mechanical property. The seawater increases the compressive strength of CSA cement in the early stage of hydration but will increase the microcracks at the later hydration stage of CSA cement and reduce its mechanical properties.


2012 ◽  
Vol 174-177 ◽  
pp. 743-746
Author(s):  
Ya Jun Zhao ◽  
Ying Gao ◽  
Li Li He

The mixture proportion of recycled concrete was discussed by orthogonal design method. The influence of water-cement ratio, recycled aggregate quantity on workability, cube compressive strength of recycled concrete was analyzed. The experimental results indicated that,Recycled concrete mix proportion design should consider the impact of the water absorption of recycled aggregate. Unit water amount of recycled concrete should be plain concrete unit water consumption and recycled aggregate additional amount of water. Sand ratio should increase in the corresponding ordinary aggregate concrete sand ratio on the basis of 1 to 3 percent. When the water-cement ratio is 0.36 and construction waste content of 40% slag content of 20%, 28d compressive strength of concrete is 48.1MPa, slightly higher than the reference concrete (48.0MPa).


2014 ◽  
Vol 912-914 ◽  
pp. 131-135
Author(s):  
Xiang Ping Fu ◽  
Xiao Xue Liu ◽  
Yi Ze Sun ◽  
Pei Huang ◽  
Yu Chen Li ◽  
...  

The experiment studies how the freeze-thaw cycles influence concrete compressive strength and elasticity modulus with different water-cement ratio under the air-entraining agent and zero of that value respectively. It can be found that modulus of elasticity and compressive strength of the concrete specimen reduced significantly when there is air-entraining agent; the durability of freeze-thaw resistance, however, makes great improvement; as the cement increases, both of them improves effectively. Through the comparison of concrete compressive strength and elastic modulus with different water-cement ratio and air-entraining agent, the optimal water-cement ratio and air-entraining agent were determined. The results of experiment can be used in concrete engineering design in severe cold area.


2015 ◽  
Vol 1089 ◽  
pp. 265-269 ◽  
Author(s):  
Jun Liu ◽  
Xiang Mei Meng ◽  
Hong Tao Mu

To figure out the physical and mechanical performance of graphite foam concrete,orthogonal test was applied to ascertain four factors for graphite foamed cement-based material (GFCBM). The influence of water cement ratio, graphite content, hydrogen peroxide content and sodium sulfite content on the dry density, porosity and compressive strength was also discussed. The results show that sodium sulfite has a relatively significant effect on the physical and mechanical performance. The dry density and compressive strength increases first and then decrease with the water cement ratio, adding of hydrogen peroxide and sodium sulfite increasing and increase with adding of the graphite. The trend of porosity is opposite to the dry density and compressive strength. The optimal scheme for this experiment is water cement ratio 0.68, 5% graphite, 8% hydrogen peroxide and 6% sodium sulfate.


2016 ◽  
Vol 24 (3) ◽  
pp. 36-43
Author(s):  
O. W. Oseni ◽  
M. T. Audu

Abstract The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 – 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.


2016 ◽  
Vol 718 ◽  
pp. 177-183 ◽  
Author(s):  
Tanapan Kantasiri ◽  
Pornnapa Kasemsiri ◽  
Uraiwan Pongsa ◽  
Salim Hiziroglu

In this study, the compressive strength, unit weight and chemical structure of light weight concrete (LWC) containing crumb rubber after exposure to high temperature are investigated. The crumb rubber was used as light weight aggregate in place of normal aggregate at the content of 3-15 wt% of LWC. For all mixtures, the water/cement ratio and sand/cement ratio were fixed at 0.5 and 0.2, respectively. The experimental results showed that the unit weight of LWC containing crumb rubber decreased with increasing crumb rubber content. The unit weight and compressive strength values are in range of 1566-1761 kg/m3, 12-29 MPa, respectively. The LWCs containing 3-7 wt% and 15 wt% crumb rubber can meet the requirement of ASTM standards for structural light weight concrete and masonry, respectively. After high temperature exposure, the unit weight loss and compressive strength loss were 25% and 75%, respectively. All specimens still complied with the requirement of ASTM standard for masonry.


2016 ◽  
Vol 9 (3) ◽  
pp. 395-402 ◽  
Author(s):  
M. A. P. Irrigaray ◽  
R. C. de A. Pinto ◽  
I. J. Padaratz

ABSTRACT Although the ultrasonic pulse velocity (UPV) method has been extensively used to estimate concrete compressive strength, the relationship between UPV and concrete strength is mixture dependent. As a result, the applicability of this method to estimate strength is well known to be limited. Aggregate type, cement type, mixture proportions, and water-cement ratio influence such a relationship. Nevertheless, UPV and strength are both governed by cement hydration, and thus, a relationship between UPV in the cement paste phase and concrete compressive strength would be expected to exist. By not taking into account the type and volume content of aggregates, this relationship could be the same for concrete mixtures with same type of cement and water-cement ratio, regardless the aggregate type used. This study investigates the existence of such a relationship. Concrete mixtures with water-cement ratios of 0.48, 0.55 and 0.64, with different paste volumes were prepared in the laboratory. For each mixture, compressive strength and ultrasonic pulse velocity were evaluated at various ages. The UPV of each concrete phase: paste, fine aggregate, and coarse aggregate, was obtained through paste and mortar specimens. This study indicated that it is possible to establish a unique relationship between the UPV in cement paste phase and the concrete compressive strength. This unique relationship could be applied to several concrete mixtures, greatly expanding the use of the UPV method to estimate compressive strength.


2020 ◽  
Vol 15 (2) ◽  
pp. 58-65
Author(s):  
Muhamad Farhan Kurniawan ◽  
Tri Mulyono ◽  
Daryati Daryati

This study aims to determine the effect of superplasticizer usage on concrete compressivestrenght with variation of water cement ratio using subdivided crude aggregates (split).This research cylindrical test object with diameter 15 cm and height 30 cm. Compressivestrength concrete design fc’ 35 MPa, with variation of water cement ratio W/C 0,4; 0,45; 0,5 andusing Superplasticizer Sikament LN materials 0,5% of the weight of cement and slump value 12 ± 2cm.The result of research showed an increase the value of concrete compressive strength withthe addition of superplasticizer. The average of concrete compressive strength without the addition ofsuperplasticizer and variation of water cement ratio W/C 0,4; 0,45; 0,5 at 28 days in a row is 36,14MPa, 34,73 MPa, 29,82 MPa. While the value of concrete compressive strength with the addition ofsuperplasticizer increase to 39,73 MPa, 37,18 MPa, 31,23 MPa.


Sign in / Sign up

Export Citation Format

Share Document