scholarly journals KIAA0101 knockdown inhibits cell proliferation and induces cell cycle arrest and cell apoptosis in chronic lymphocytic leukemia cells

2021 ◽  
Vol 9 (6) ◽  
pp. 487-487
Author(s):  
Qing Zhang ◽  
Jingjing Yuan ◽  
Yanyan Liu ◽  
Xingchen Liu ◽  
Tianxin Lv ◽  
...  
Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4083-4083 ◽  
Author(s):  
Xingyi Kuang ◽  
Jie Xiong ◽  
Weili Wang ◽  
Xinyao Li ◽  
Tingting Lu ◽  
...  

Abstract The serine/threonine PIM protein kinases are critical regulators of turmorigenesis in mutiple hematologic malignancies and solid cancers. We used real-time PCR to detect the expression of PIM in B-cell acute lymphocytic leukemia (B-ALL) patients, and found the expression of PIM in B-ALL patients was significantly higher than that in normal controls. SMI-4a is a pan-PIM small molecule inhibitor, and this agent exhibits demonstrable preclinical antitumour activity in a wide range of hematologic malignant cell lines. To further explore the effect of SMI-4a on B-ALL cells, B-ALL cell lines CCRF-SB and Sup-B15 were treated with this small molecule inhibitor, and the results showed that SMI-4a inhibited B-ALL cell proliferation in a dose- and time-dependent manner. Moreover, SMI-4a significantly promoted B-ALL cell apoptosis and caused cell cycle arrest in the G0/G1 phase. The results of Western blot showed that SMI-4a increased the expression of Caspase-3, Caspase-9, Bax and P21, and decreased the expression of Bcl-2 and CDK4. Furthermore, we found that SMI-4a significantly inhibits the activation of the JAK2/STAT3 pathway and HO-1 interferes with the JAK2/STAT3 pathway to inhibit SMI-4a-induced ALL cell apoptosis. Finally, xenograft experiments in NOD/SCID mice were operated to investigate the potential role of SMI-4a in B-ALL tumorigenesis in vivo. To observe the effect of SMI-4a on tumor growth in vivo, NOD/SCID mice were transplanted with B-ALL devied cells, and the tumor-bearing mice were intraperitoneally injected with saline and SMI-4a, respectively. As a result, tretment with SMI-4a resulted in a significant inhibition on tumor growth. In addition, PIM inhibtor obviously reduced the volume and weight of B-ALL cell-derived tumors. TUNEL assay revealed the proportion of apoptotic cells was higher in the SMI-4a-treated group than in the control group. Taken together, our data showed PIM inhibitor (SMI-4a) significantly inhibits the growth of B-ALL cells in vitro and in vivo and promotes apoptosis and cell cycle arrest. This suppressive effect is mediated partly through inhibiting the JAK2/STAT3 pathway activation. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Hua Zhang ◽  
Xiaojin Zhao ◽  
Fajun Shang ◽  
Huan Sun ◽  
Xu Zheng ◽  
...  

Background: Colorectal cancer (CRC) is the third-ranked malignant tumor in the world that contributes to the death of a major population of the world. Celastrol, a bioactive natural product isolated from the medicinal plant Tripterygium wilfordii Hook F, has been proved to be an effective anti-tumor inhibitor for multiple tumors. Objective: To reveal the therapeutic effect and underlying mechanisms of celastrol on CRC cells. Methods: CCK-8 and clonogenic assay were used to analyze the cell proliferation in CRC cells. Flow cytometry analysis was conducted to assess the cell cycle and cell apoptosis. Wound-healing and cell invasion assay were used to evaluate the migrating and invasion capability of CRC cells. The potential antitumor mechanism of celastrol was investigated by qPCR, western blot, and confocal immunofluorescence analyses. Results: Celastrol effectively inhibited CRC cell proliferation by activating caspase-dependent cell apoptosis and facilitating G1 cell cycle arrest in a dose-dependent manner, as well as cell migration and invasion by downregulating the MMP2 and MMP9. Mechanistic protein expression revealed that celastrol suppressed the expression of COX-2 by inhibiting the phosphorylation of NF-κB p65 and subsequently leading to cytoplasmic retention of p65 protein, thereby inhibiting its nuclear translocation and transcription activities. Conclusion: These findings indicate that celastrol is an effective inhibitor for CRC, regulating the NF-κB/COX-2 pathway, leading to the inhibition of cell proliferation characterized by cell cycle arrest and caspase-dependent apoptosis, providing a potential alternative therapeutic agent for CRC patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ismail Abiola Adebayo ◽  
Adamu Ibrahim Usman ◽  
Fatimah Bukola Shittu ◽  
Noor Zafirah Ismail ◽  
Hasni Arsad ◽  
...  

Background. Acute myeloid leukemia (AML) persists to be a major health problem especially among children as effective chemotherapy to combat the disease is yet to be available. Boswellia dalzielii is a well-known herb that is traditionally used for treatment and management of many diseases including degenerative diseases. In this study, silver nanoparticles were synthesized from the phytochemicals of B. dalzielii stem bark aqueous extract. The silver nanoparticles were characterized by carrying out Fourier Transform Infrared (FTIR) spectroscopy, Energy Filtered Scanning Electron Microscopy (FESEM), X-ray diffraction, and Dynamic Light Scattering (DLS) analyses. Antioxidant capacity of the nanoparticles was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and the antiproliferative effect of the nanoparticles on Kasumi-1 leukemia cells was investigated using PrestoBlue assay. Flow cytometry analysis was performed to observe the effect of the nanoparticles on the leukemia cell cycle progression. Results. Our findings revealed that the synthesized silver nanoparticles were formed from electrons of the plant phytochemicals which include aromatic compounds, ethers, and alkynes. FESEM analysis revealed that the sizes of the nanoparticles range from 12 nm to 101 nm; however, DLS analysis estimated a larger average size of the nanoparticles (108.3 nm) because it measured the hydrodynamic radii of the nanoparticles. The zeta potential of the nanoparticles was −16 nm, and the XRD pattern of the nanoparticles has distinct peaks at 38.02°, 42.94°, 64.45°, 77.20°, and 81.47°, which is typical of face-centered cubic (fcc) structure of silver. The Trolox Equivalence Antioxidant Capacity (TEAC) of the nanoparticles was estimated to be 300.91 μM Trolox/mg silver nanoparticles. The nanoparticles inhibited Kasumi-1 cell proliferation. The half minimal inhibitory concentrations (IC50s) that inhibited Kasumi-1 cell proliferation are 49.5 μg/ml and 13.25 μg/ml at 48 and 72 hours, respectively. The nanoparticles induced cell cycle arrest in the Kasumi-1 cells at S (5% increase) and G2/M (3% increase) phases. Conclusion. The nanoparticles synthesized from the stem bark extract of B. dalzielii inhibit the growth of Kasumi-1 leukemia cells by activating cell cycle arrest; thus, they are potential antileukemic agents.


2020 ◽  
Vol 245 (12) ◽  
pp. 1009-1015
Author(s):  
Jinhai Ren ◽  
Ying Wang ◽  
Lihua Wang ◽  
Xiaoling Guo ◽  
Xiaonan Guo

Myelodysplastic syndromes (MDSs) are a series of heterogeneous diseases affecting hematopoietic stem cells that result in hematopoiesis disturbance and leukemic transformation. As an essential cell cycle regulator, ribophorin II (RPN2) has been extensively identified as a prospective predictor of prognosis in diverse malignant tumors. However, its effects on MDS are unclear. We observed increased mRNA expression RPN2 in samples from MDS patients, compared with samples from normal healthy controls. RPN2 overexpression promoted the proliferation of Ontario Cancer Institute OCI-acute myeloid leukemia 3 (OCI-AML3) cells, whereas RPN2 silencing clearly suppressed the proliferation of OCI-AML3 cells. Furthermore, RPN2 silencing caused G1/S cell cycle arrest and cell apoptosis. In addition, RPN2 overexpression led to a higher proportion of cells in the G2/M phase and reduced cell apoptosis. RPN2 overexpression downregulated enhancer of zeste homolog-2 (EZH2) expression, whereas RPN2 downregulation increased EZH2 expression in a dose-dependent manner. Co-immunoprecipitation showed an interaction between RPN2 and EZH2. Additionally, the administration of 3-deazaneplanocin A, an EZH2 inhibitor, reversed the function of RPN2 silencing in cell cycle arrest and apoptosis induction in OCI-AML3 cells. Hence, RPN2 is an essential regulator of cell proliferation. This study described the etiology of OCI-AML3 cell proliferation regulated by RPN2 and EZH2. Impact statement This study explored the role of ribophorin II (RPN2) in myelodysplastic syndromes (MDSs) cell proliferation and growth and revealed that RPN2 knockdown suppressed OCI-AML3 cell growth and proliferation and triggered cell cycle arrest and elicited apoptosis in OCI-AML3 cells. In addition, it shed light on the etiology of RPN2’s role in MDS cell proliferation that RPN2 can negatively impact enhancer of zeste homolog-2 (EZH2) expression, which in turn is able to modulate the cell cycle location and death in OCI-AML3 cells. Hence, RPN2 expression could be a latent predictor of prognosis in patients with MDS.


Sign in / Sign up

Export Citation Format

Share Document