scholarly journals Resveratrol and quercetin-induced apoptosis of human 232B4 chronic lymphocytic leukemia cells by activation of caspase-3 and cell cycle arrest

Hematology ◽  
2013 ◽  
Vol 18 (3) ◽  
pp. 144-150 ◽  
Author(s):  
Aysun Adan Gokbulut ◽  
Elif Apohan ◽  
Yusuf Baran
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4439-4439
Author(s):  
Bin Wang ◽  
Junichi Tsukada ◽  
Takehiro Higashi ◽  
Takamitsu Mizobe ◽  
Ai Matsuura ◽  
...  

Abstract Activation of c-jun N-terminal kinase (JNK) through c-kit-mediated phosphatidylinositol 3 (PI3) and Src kinase pathways plays an important role in cell proliferation and survival in mast cells. Gain-of-function mutations in c-kit are found in several human neoplasms. Constitutive activation of c-kit has been observed in human mastocytosis, acute myeloid leukemia, lymphoma, germ tumor and gastrointestinal stromal tumor. In the present study, we demonstrate that an anthrapyrazole SP600125, a reversible ATP-competitive inhibitor of JNK inhibits proliferation of human HMC-1 mast cells expressing constitutively activated c-kit mutant. We found that JNK/c-Jun was constitutively activated in HMC-1 cells without stimulation. When spontaneous activation of JNK/c-Jun was inhibited by treatment with SP600125, cell proliferation was suppressed. The concentration which effectively inhibited JNK/c-Jun activity in our experiment had no effect on SCF-induced phosphorylation of Akt or Erk, suggesting that SP600125 specifically inhibited JNK/c-Jun activity in HMC-1 cells. Moreover, we demonstrated that SP600125 induced HMC-1 cell apoptosis in dose- and time-dependent manner. Caspase-3 and PARP were cleaved as early as 12 h after treatment with SP600125, but caspase-9 was not. Also, cell cycle arrest in G1 phase was observed in SP600125 treated cells. Thus, the inhibitory effect of SP600125 on cell proliferation was associated with cell cycle arrest at the G1 phase and apoptosis accompanied by cleavage of caspase-3 and PARP. Caspase-3 inhibitor Z-DEVD-FMK almost completely inhibited SP600125-induced apoptosis of HMC-1 cells. In contrast, caspase-9 inhibitor Z-LEHD-FMK failed to block SP600125-induced apoptosis, suggesting that apoptosis induced by SP600125 was caspase-3 dependent. Following SP600125 treatment, down-regulation of cyclin D3 protein expression, but not p53 was also observed. Take together, JNK/c-Jun is essential for proliferation and survival of HMC-1 cells. The results obtained from the present study suggest the possibility that JNK/c-Jun may be a therapeutic target in diseases associated with c-kit mutant.


2007 ◽  
Vol 293 (2) ◽  
pp. L393-L401 ◽  
Author(s):  
Yi-Mu Lai ◽  
Kamal A. Mohammed ◽  
Najmunnisa Nasreen ◽  
Aidos Baumuratov ◽  
Brendan F. Bellew ◽  
...  

Bronchial airway epithelial cells (BAEpC) are among the first cells to encounter M. tuberculosis following airborne infection. However, the response of BAEpC to M. tuberculosis infection has been little studied. This study investigates the response of a human BAEpC cell line (BEAS-2B) to infection with Mycobacterium bovis Bacille Calmette Guerin (BCG). Cultured human BEAS-2B cells were experimentally infected with BCG. Uninfected BEAS-2B cultures were included as controls. Following infection, BEAS-2B cells were evaluated by various methods at various time points up to 3 days. Cell proliferation was evaluated by cellular bioreduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Distribution of cells along the cell cycle was evaluated by FACS analysis of cellular DNA. Apoptotic cells were identified by cell death ELISA and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling method. Eighty-four apoptosis-relevant genes were screened by PCR gene microarray. Translation of Fas, Fas ligand (Fas-L), and Fas-associated death domain (FADD) were evaluated quantitatively by real-time PCR. Expression of Fas and FADD proteins was evaluated by immunofluorescence and Western blot. Activity of caspase-3 and caspase-8 was evaluated by colorimetric assay of their enzymatic activity. BCG infection of BEAS-2B cells inhibits proliferation, induces cell cycle arrest at the G0/G1phase, causes apoptosis, modulates transcription of multiple apoptosis-relevant genes, promotes translation of Fas, Fas-L, and FADD, upregulates expression of Fas and FADD proteins, and increases activity of caspase-3 and caspase-8. Infection with BCG does not cause any significant change in the secretion of TGF-β. The roles of Fas and FADD as mediators of BCG-induced apoptosis in BEAS-2B cells were tested by partial blockade of Fas and FADD expression with silencing RNA. Partial blockade of Fas or FADD expression results in a decreased apoptotic response to BCG infection. In conclusion, BCG induces cell cycle arrest and apoptosis in BEAS-2B cells. BCG induced apoptosis of BEAS-2B cells via the Fas death receptor pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tereza Cristina da Silva ◽  
Bruno Cogliati ◽  
Andréia Oliveira Latorre ◽  
Gokithi Akisue ◽  
Márcia Kazumi Nagamine ◽  
...  

Hebanthe paniculataroots (formerlyPfaffia paniculataand popularly known as Brazilian ginseng) show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation,p27KIP1overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction fromH. paniculatain HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation andp27KIP1overexpression, besides induction of apoptosis through caspase-3 activation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2536-2536
Author(s):  
Kensuke Kojima ◽  
Marina Konopleva ◽  
Masato Shikami ◽  
Maria Cabreira-Hansen ◽  
C. Ellen Jackson ◽  
...  

Abstract Alteration of the p53 gene is one of the most frequent events in human tumorigenesis and about 50% of all solid tumors have been reported to carry p53 mutations. The inactivation of p53 in cancer has been associated with poor survival, refractory disease and chemoresistance. p53 mutations rarely occur in hematopoietic malignancies. Instead, MDM2 which is a principal cellular antagonist of p53, is overexpressed in the majority of leukemias. Recently, potent and selective small-molecule antagonists of MDM2, Nutlins, have been identified (Science303:844–888, 2004). Nutlins bind MDM2 in the p53-binding pocket and activate the p53 pathway in human cancer cells with wild-type p53, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts in nude mice. In this study, we investigated the potential antileukemic activity of the MDM2 antagonist. Treatment of wild-type p53 OCI-AML-3 cells with 5 μM of an active compound (Nutlin-3a) induced cell cycle arrest and apoptosis as evidenced by flow-cytometric analysis (51% reduction of S-phase at 12 h, 27% sub-G1 DNA content and 57% Annexin V positivity at 48 h). Similar proapoptotic effects were observed in MOLM-13 cells which have wild-type p53, but not in p53-null (HL-60 and U937) or mutant p53 (Raji, Jurkat and NB-4) cells. Nutlin-3a induced apoptosis in a dose- and time-dependent manner, and induced maximal effect on cell cycle arrest at 1 μM. Western blot analysis showed that in OCI-AML-3 cells, wild-type p53 accumulated at 1 h after exposure to Nutlin-3a. Increased levels of MDM2, p21 and Noxa proteins were observed at 1 to 3h. This resulted in cleavage of caspase-9 followed by cleavage of caspase-3. A pharmacologic interaction study between MDM2 inhibitor and Ara-C using a fixed-ratio (1:1) experimental design showed highly synergistic cell growth inhibition (CI = 0.44) and induction of apoptosis (CI = 0.83) in OCI-AML-3 cells. Initial studies conducted in primary leukemia cells demonstrated that Nutlin-3a induced apoptosis in 4 of 5 AML samples tested (68–97% Annexin V induction and 65–93% cell number reduction) and 2 CLL samples (>50% Annexin V induction and 37% and 58% cell number reduction). Since MDM2 protein is overexpressed and p53 is not mutated in the majority of primary leukemia cells, this approach may have therapeutic utility in leukemias.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xinhong Wang ◽  
Junxu Liu ◽  
Li Jiang ◽  
Xiangxiang Wei ◽  
Cong Niu ◽  
...  

The transcription factor BTB and CNC homology 1 (Bach1) regulates genes involved in the oxidative stress response and cell-cycle progression. We have recently shown that Bach1 impairs cell proliferation and promotes apoptosis in cultured endothelial cells (ECs), but the underlying mechanisms are largely uncharacterized. Here we demonstrate that Bach1 upregulation impaired the blood flow recovery from hindlimb ischemia and this effect was accompanied both by increases in reactive oxygen species (ROS) and cleaved caspase 3 levels and by declines in the expression of cyclin D1 in the injured tissues. We found that Bach1 overexpression induced mitochondrial ROS production and caspase 3-dependent apoptosis and its depletion attenuated H2O2-induced apoptosis in cultured human microvascular endothelial cells (HMVECs). Bach1-induced apoptosis was largely abolished when the cells were cultured with N-acetyl-l-cysteine (NAC), a ROS scavenger. Exogenous expression of Bach1 inhibited the cell proliferation and the expression of cyclin D1, induced an S-phase arrest, and increased the expression of cyclin E2, which were partially blocked by NAC. Taken together, our results suggest that Bach1 suppresses cell proliferation and induces cell-cycle arrest and apoptosis by increasing mitochondrial ROS production, suggesting that Bach1 may be a promising treatment target for the treatment of vascular diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Fu-Lun Li ◽  
Rong Xu ◽  
Qing-chun Zeng ◽  
Xin Li ◽  
Jie Chen ◽  
...  

The aim of the present investigation was to elucidate the cellular mechanisms whereby Tanshinone IIA (Tan IIA) leads to cell cycle arrest and apoptosisin vitroin keratinocytes, the target cells in psoriasis. Tan IIA inhibited proliferation of mouse keratinocytes in a dose- and time-dependent manner and induced apoptosis, resulting in S phase arrest accompanied by down-regulation of pCdk2 and cyclin A protein expression. Furthermore, Tan IIA-induced apoptosis and mitochondrial membrane potential changes were also further demonstrated by DNA fragmentation, single-cell gel electrophoresis assay (SCGE), and flow cytometry methods. Apoptosis was partially blocked by the caspase-3 inhibitor Ac-DEVD-CHO. Mitochondrial regulation of apoptosis further downstream was investigated, showing changes in the mitochondrial membrane potential, cytochrome c release into the cytoplasm, and enhanced activation of cleaved caspase-3 and Poly ADP-ribose polymerase (PARP). There was also no translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus in apoptotic keratinocytes, indicating Tan IIA-induced apoptosis occurs mainly through the caspase pathway. Our findings provide the molecular mechanisms by which Tan IIA can be used to treat psoriasis and support the traditional use ofSalvia miltiorrhiza Bungee (Labiatae)for psoriasis and related skin diseases.


Sign in / Sign up

Export Citation Format

Share Document