scholarly journals Artificial intelligence in thoracic diseases: the next technology to improve individual precision medicine

2021 ◽  
Vol 13 (12) ◽  
pp. 6940-6942
Author(s):  
Hengrui Liang ◽  
Jianxing He
2020 ◽  
Vol 28 ◽  
Author(s):  
Valeria Visco ◽  
Germano Junior Ferruzzi ◽  
Federico Nicastro ◽  
Nicola Virtuoso ◽  
Albino Carrizzo ◽  
...  

Background: In the real world, medical practice is changing hand in hand with the development of new Artificial Intelligence (AI) systems and problems from different areas have been successfully solved using AI algorithms. Specifically, the use of AI techniques in setting up or building precision medicine is significant in terms of the accuracy of disease discovery and tailored treatment. Moreover, with the use of technology, clinical personnel can deliver a very much efficient healthcare service. Objective: This article reviews AI state-of-the-art in cardiovascular disease management, focusing on diagnostic and therapeutic improvements. Methods: To that end, we conducted a detailed PubMed search on AI application from distinct areas of cardiology: heart failure, arterial hypertension, atrial fibrillation, syncope and cardiovascular rehabilitation. Particularly, to assess the impact of these technologies in clinical decision-making, this research considers technical and medical aspects. Results: On one hand, some devices in heart failure, atrial fibrillation and cardiac rehabilitation represent an inexpensive, not invasive or not very invasive approach to long-term surveillance and management in these areas. On the other hand, the availability of large datasets (big data) is a useful tool to predict the development and outcome of many cardiovascular diseases. In summary, with this new guided therapy, the physician can supply prompt, individualised, and tailored treatment and the patients feel safe as they are continuously monitored, with a significant psychological effect. Conclusion: Soon, tailored patient care via telemonitoring can improve the clinical practice because AI-based systems support cardiologists in daily medical activities, improving disease detection and treatment. However, the physician-patient relationship remains a pivotal step.


2021 ◽  
pp. 1-6
Author(s):  
Matt Landers ◽  
Suchi Saria ◽  
Alberto J. Espay

The use of artificial intelligence (AI) to help diagnose and manage disease is of increasing interest to researchers and clinicians. Volumes of health data are generated from smartphones and ubiquitous inexpensive sensors. By using these data, AI can offer otherwise unobtainable insights about disease burden and patient status in a free-living environment. Moreover, from clinical datasets AI can improve patient symptom monitoring and global epidemiologic efforts. While these applications are exciting, it is necessary to examine both the utility and limitations of these novel analytic methods. The most promising uses of AI remain aspirational. For example, defining the molecular subtypes of Parkinson’s disease will be assisted by future applications of AI to relevant datasets. This will allow clinicians to match patients to molecular therapies and will thus help launch precision medicine. Until AI proves its potential in pushing the frontier of precision medicine, its utility will primarily remain in individualized monitoring, complementing but not replacing movement disorders specialists.


10.2196/15511 ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. e15511 ◽  
Author(s):  
Bach Xuan Tran ◽  
Son Nghiem ◽  
Oz Sahin ◽  
Tuan Manh Vu ◽  
Giang Hai Ha ◽  
...  

Background Artificial intelligence (AI)–based technologies develop rapidly and have myriad applications in medicine and health care. However, there is a lack of comprehensive reporting on the productivity, workflow, topics, and research landscape of AI in this field. Objective This study aimed to evaluate the global development of scientific publications and constructed interdisciplinary research topics on the theory and practice of AI in medicine from 1977 to 2018. Methods We obtained bibliographic data and abstract contents of publications published between 1977 and 2018 from the Web of Science database. A total of 27,451 eligible articles were analyzed. Research topics were classified by latent Dirichlet allocation, and principal component analysis was used to identify the construct of the research landscape. Results The applications of AI have mainly impacted clinical settings (enhanced prognosis and diagnosis, robot-assisted surgery, and rehabilitation), data science and precision medicine (collecting individual data for precision medicine), and policy making (raising ethical and legal issues, especially regarding privacy and confidentiality of data). However, AI applications have not been commonly used in resource-poor settings due to the limit in infrastructure and human resources. Conclusions The application of AI in medicine has grown rapidly and focuses on three leading platforms: clinical practices, clinical material, and policies. AI might be one of the methods to narrow down the inequality in health care and medicine between developing and developed countries. Technology transfer and support from developed countries are essential measures for the advancement of AI application in health care in developing countries.


2019 ◽  
Vol 7 (4) ◽  
pp. 208-213 ◽  
Author(s):  
Fabian V. Filipp

Abstract Purpose of Review We critically evaluate the future potential of machine learning (ML), deep learning (DL), and artificial intelligence (AI) in precision medicine. The goal of this work is to show progress in ML in digital health, to exemplify future needs and trends, and to identify any essential prerequisites of AI and ML for precision health. Recent Findings High-throughput technologies are delivering growing volumes of biomedical data, such as large-scale genome-wide sequencing assays; libraries of medical images; or drug perturbation screens of healthy, developing, and diseased tissue. Multi-omics data in biomedicine is deep and complex, offering an opportunity for data-driven insights and automated disease classification. Learning from these data will open our understanding and definition of healthy baselines and disease signatures. State-of-the-art applications of deep neural networks include digital image recognition, single-cell clustering, and virtual drug screens, demonstrating breadths and power of ML in biomedicine. Summary Significantly, AI and systems biology have embraced big data challenges and may enable novel biotechnology-derived therapies to facilitate the implementation of precision medicine approaches.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3532 ◽  
Author(s):  
Ryuji Hamamoto ◽  
Kruthi Suvarna ◽  
Masayoshi Yamada ◽  
Kazuma Kobayashi ◽  
Norio Shinkai ◽  
...  

In recent years, advances in artificial intelligence (AI) technology have led to the rapid clinical implementation of devices with AI technology in the medical field. More than 60 AI-equipped medical devices have already been approved by the Food and Drug Administration (FDA) in the United States, and the active introduction of AI technology is considered to be an inevitable trend in the future of medicine. In the field of oncology, clinical applications of medical devices using AI technology are already underway, mainly in radiology, and AI technology is expected to be positioned as an important core technology. In particular, “precision medicine,” a medical treatment that selects the most appropriate treatment for each patient based on a vast amount of medical data such as genome information, has become a worldwide trend; AI technology is expected to be utilized in the process of extracting truly useful information from a large amount of medical data and applying it to diagnosis and treatment. In this review, we would like to introduce the history of AI technology and the current state of medical AI, especially in the oncology field, as well as discuss the possibilities and challenges of AI technology in the medical field.


2020 ◽  
Vol 25 (4) ◽  
Author(s):  
Christopher Moehle ◽  
Jessica Gibson

“Robotics”, “Artificial Intelligence”, and “Machine Learning” have become an almost impossibly broad amalgam of terminologies that span across industries to include everything from the cotton gin to self-driving cars, and touch a broad range of biotechnology and med tech applications.  We address the spread of these transformative technologies across every interpretation of the analogy, including the spectrum ranging from practical, highly economic products to inventive science fiction with speculative business cases.  In this two-part article, we first briefly overview the high-level commonalities between historically successful products and the economic factors driving adoption of these intelligent technologies in our current economy.  In doing so, we focus heavily on “Augmentation” as a central theme of the best products historically, now, and in the near future.  In the second part of the article, we further illustrate how “Augmented Intelligence” can be applied to biotech. This is done through a mini-case study, or a detailed practicum, on Ariel Precision Medicine, to illustrate how “Augmented Intelligence” can be applied to precision medicine currently.


2019 ◽  
Author(s):  
Adam Bress ◽  
Rich Albrechtsen ◽  
Monika Baker ◽  
Jorge L. Contreras ◽  
Zachary Fica ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document