Application of the High-Effective Method for Numerical Integration of the Differential Equation of Motion to solve the Problems of Flight Dynamics of Asteroids Encounter the Earth and the Space Crafts Designed to Rendezvous with these Asteroids

Author(s):  
Y. Kolyuka ◽  
◽  
T. Afanasieva ◽  
2014 ◽  
Vol 1030-1032 ◽  
pp. 223-227
Author(s):  
Lin Fan ◽  
Song Rong Qian ◽  
Teng Fei Ma

In order to analysis the force situation of the material which is discontinuity,we can used the new theory called peridynamics to slove it.Peridynamics theory is a new method of molecular dynamics that develops very quickly.Peridynamics theory used the volume integral equation to constructed the model,used the volume integral equation to calculated the PD force in the horizon.So It doesn’t need to assumed the material’s continuity which must assumed that use partial differential equation to formulates the equation of motion. Destruction and the expend of crack which have been included in the peridynamics’ equation of motion.Do not need other additional conditions.In this paper,we introduce the peridynamics theory modeling method and introduce the relations between peridynamics and classic theory of mechanics.We also introduce the numerical integration method of peridynamics.Finally implementation the numerical integration in prototype microelastic brittle material.Through these work to show the advantage of peridynamics to analysis the force situation of the material.


Author(s):  
Vasil Olshanskiy ◽  
Stanislav Olshanskiy ◽  
Maksym Slipchenko

The motion of an oscillator instantaneously loaded with a constant force under conditions of nonlinear external resistance, the components of which are quadratic viscous resistance, dry and positional friction, are considered. Using the first integral of the equation of motion and the Lambert function, compact formulas for calculating the ranges of oscillations are derived. In order to simplify the search for the values of the Lambert function, asymptotic formulas are given that, with an error of less than one percent, express this special function in terms of elementary functions. It is shown that as a result of the action of the resistance force, including dry friction, the oscillation process has a finite number of cycles and is limited in time, since the oscillator enters the stagnation region, which is located in the vicinity of the static deviation of the oscillator caused by the applied external force. The system dynamic factor is less than two. Examples of calculations that illustrate the possibilities of the stated theory are considered. In addition to analytical research, numerical computer integration of the differential equation of motion was carried out. The complete convergence of the results obtained using the derived formulas and numerical integration is established, which confirms that using analytical solutions it is possible to determine the extreme displacements of the oscillator without numerical integration of the nonlinear differential equation. To simplify the calculations, the literature is also recommended, where tables of the Lambert function are printed, allowing you to find its value for interpolating tabular data. Under conditions of nonlinear external resistance, the components of which are quadratic viscous resistance, dry and positional friction, the process of oscillations of an instantly loaded oscillator has a limited number of cycles. The dependences obtained in this work using the Lambert function make it possible to determine the range of oscillations without numerical integration of the nonlinear differential equation of motion both for an oscillator with quadratic viscous resistance and dry friction, and for an oscillator with quadratic resistance and positional and dry friction. Keywords: nonlinear oscillator, instantaneous loading, quadratic viscous resistance, Lambert function, oscillation amplitude.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 174
Author(s):  
Janez Urevc ◽  
Miroslav Halilovič

In this paper, a new class of Runge–Kutta-type collocation methods for the numerical integration of ordinary differential equations (ODEs) is presented. Its derivation is based on the integral form of the differential equation. The approach enables enhancing the accuracy of the established collocation Runge–Kutta methods while retaining the same number of stages. We demonstrate that, with the proposed approach, the Gauss–Legendre and Lobatto IIIA methods can be derived and that their accuracy can be improved for the same number of method coefficients. We expressed the methods in the form of tables similar to Butcher tableaus. The performance of the new methods is investigated on some well-known stiff, oscillatory, and nonlinear ODEs from the literature.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Ye Ding ◽  
Jinbo Niu ◽  
LiMin Zhu ◽  
Han Ding

A semi-analytical method is presented in this paper for stability analysis of milling with a variable spindle speed (VSS), periodically modulated around a nominal spindle speed. Taking the regenerative effect into account, the dynamics of the VSS milling is governed by a delay-differential equation (DDE) with time-periodic coefficients and a time-varying delay. By reformulating the original DDE in an integral-equation form, one time period is divided into a series of subintervals. With the aid of numerical integrations, the transition matrix over one time period is then obtained to determine the milling stability by using Floquet theory. On this basis, the stability lobes consisting of critical machining parameters can be calculated. Unlike the constant spindle speed (CSS) milling, the time delay for the VSS is determined by an integral transcendental equation which is accurately calculated with an ordinary differential equation (ODE) based method instead of the formerly adopted approximation expressions. The proposed numerical integration method is verified with high computational efficiency and accuracy by comparing with other methods via a two-degree-of-freedom milling example. With the proposed method, this paper details the influence of modulation parameters on stability diagrams for the VSS milling.


1949 ◽  
Vol 39 (3) ◽  
pp. 205-218
Author(s):  
S. K. Chakrabarty

Summary The equation of motion of the seismometer and the galvanometer in an electromagnetic seismograph has been derived in the most general form taking into consideration all the forces acting on the system except that produced by hysteresis. A general solution has been derived assuming that the earth or the seismometer frame is subjected to a sustained simple harmonic motion, and expressions for both the transient and the steady term in the solution have been given. The results for the particular case when the seismograph satisfies the Galitzin conditions can easily be deduced from the results given in the present paper. The results can now be used to study the response characteristics of all electromagnetic seismographs, whether they satisfy the Galitzin conditions or not, and will thus give an accurate theoretical picture of the response also of seismographs used for the study of “local earthquakes” and “microseisms” which do not in general obey the Galitzin conditions. The results obtained can also be used to get analytically the response of the seismographs for different types of earth motion from the very beginning, and not only after the transient term has disappeared. The theory of the response to simple tests used to determine the dynamic magnification of any seismograph and also to determine and check regularly the instrumental constants of the seismographs has been worked out. The results obtained can also be used for ascertaining the proper values of the instrumental constants suitable for the various purposes for which the seismographs are to be used.


Author(s):  
Vasiliy Olshansky ◽  
Stanislav Olshansky ◽  
Oleksіі Tokarchuk

The motion of an oscillatory system with one degree of freedom, described by the generalized Rayleigh differential equation, is considered. The generalization is achieved by replacing the cubic term, which expresses the dissipative strength of the equation of motion, by a power term with an arbitrary positive exponent. To study the oscillatory process involved the method of energy balance. Using it, an approximate differential equation of the envelope of the graph of the oscillatory process is compiled and its analytical solution is constructed from which it follows that quasilinear frictional self-oscillations are possible only when the exponent is greater than unity. The value of the amplitude of the self-oscillations in the steady state also depends on the value of the indicator. A compact formula for calculating this amplitude is derived. In the general case, the calculation involves the use of a gamma function table. In the case when the exponent is three, the amplitude turned out to be the same as in the asymptotic solution of the Rayleigh equation that Stoker constructed. The amplitude is independent of the initial conditions. Self-oscillations are impossible if the exponent is less than or equal to unity, since depending on the initial deviation of the system, oscillations either sway (instability of the movement is manifested) or the range decreases to zero with a limited number of cycles, which is usually observed with free oscillations of the oscillator with dry friction. These properties of the oscillatory system are also confirmed by numerical computer integration of the differential equation of motion for specific initial data. In the Maple environment, the oscillator trajectories are constructed for various values of the nonlinearity index in the expression of the viscous resistance force and a corresponding comparative analysis is carried out, which confirms the adequacy of approximate analytical solutions.


Author(s):  
Fernando Peña

This chapter addresses the numerical modeling of freestanding rigid blocks by means of a semi-discrete approach. The pure rocking motion of single rigid bodies can be easily studied with the differential equation of motion, which can be solved by numerical integration or by linearization. However, when we deal with sliding and jumping motion of rigid bodies, the mathematical formulation becomes quite complex. In order to overcome this complexity, a Semi-Discrete Model (SMD) is proposed for the study of rocking motion of rigid bodies, in which the rigid body is considered as a mass element supported by springs and dashpots, in the spirit of deformable contacts between rigid blocks. The SMD can detect separation and sliding of the body; however, initial base contacts do not change, keeping a relative continuity between the body and its base. Extensive numerical simulations have been carried out in order to validate the proposed approach.


1962 ◽  
Vol 13 (3) ◽  
pp. 427-432 ◽  
Author(s):  
John W. Miles

The inviscid Orr-Sommerfeld equation for ϕ(y) in y > 0 subject to a null condition as y → ∞ is attacked by considering separately the intervals (0, y1) and (y1, ∞), such that the solution in (0, y1) can be expanded in powers of the wave-number (following Heisenberg) and the solution of (y1, ∞) regarded as real and non-singular. Complementary variational principles for the latter solution are determined to bound an appropriate parameter from above and below. It also is shown how the original differential equation may be transformed to a Riccati equation in such a way as to facilitate both the Heisenberg expansion of the solution in (0, y1) and numerical integration in (y1, ∞). These methods are applied to a velocity profile that is linear in (0, y1) and asymptotically logarithmic as y → ∞, and it is found that the mean of the two variational approximations is in excellent agreement with the results of numerical integration of the Riccati equation.


Author(s):  
Martin Botello ◽  
Christian Reyes ◽  
Julio Beatriz ◽  
Dumitru I. Caruntu

This paper investigates the voltage response of superharmonic resonance of the second order of electrostatically actuated nano-electro-mechanical system (NEMS) resonator sensor. The structure of the NEMS device is a resonator cantilever over a ground plate under Alternating Current (AC) voltage. Superharmonic resonance of second order occurs when the AC voltage is operating in a frequency near-quarter the natural frequency of the resonator. The forces acting on the system are electrostatic, damping and Casimir. To induce a bifurcation phenomenon in superharmonic resonance, the AC voltage is in the category of hard excitation. The gap distance between the cantilever resonator and base plate is in the range of 20 nm to 1 μm for Casimir forces to be present. The differential equation of motion is converted to dimensionless by choosing the gap as reference length for deflections, the length of the resonator for the axial coordinate, and reference time based on the characteristics of the structure. The Method of Multiple Scales (MMS) and Reduced Order Model (ROM) are used to model the characteristic of the system. MMS transforms the nonlinear partial differential equation of motion into two simpler problems, namely zero-order and first-order. ROM, based on the Galerkin procedure, uses the undamped linear mode shapes of the undamped cantilever beam as the basis functions. The influences of parameters (i.e. Casimir, damping, fringe, and detuning parameter) were also investigated.


2011 ◽  
Vol 383-390 ◽  
pp. 1701-1707
Author(s):  
Zhe Wang ◽  
Si Fa Xu ◽  
Guo Cai Wang ◽  
Yong Zhang

The analytical solution of a single pipe piles under axially and laterally loads is presented, when the laterally loads is optional free load. As piles foundations are becoming a preferred foundation type, piles usually work under simultaneous axial and lateral loads in engineering. To analyze the function of free loads to pipe piles under inclined loads conditions, in the basis of ‘m’ method, deformation differential equation of elastic piles under inclined loads is established first in the paper with analytical method. Differential equation has two parts in according to the piles in the earth or in the air, and lateral deformation, obliquity, moment; shearing force of the piles can be gotten respectively by soluting equations. In the end of the paper, influences of several parameters is analyzed of the top axial loads, the top lateral loads and the free loads, and their influence curves are given.


Sign in / Sign up

Export Citation Format

Share Document