scholarly journals Uniaxial Tensile Testing Device for Measuring Mechanical Properties of Biological Tissue with Stress-Relaxation Test under a Confocal Microscope

2018 ◽  
Vol 18 (5) ◽  
pp. 866-872
Author(s):  
David Vondrášek ◽  
Daniel Hadraba ◽  
Roman Matějka ◽  
František Lopot ◽  
Martin Svoboda ◽  
...  
Author(s):  
B. A. Samuel ◽  
Bo Yi ◽  
R. Rajagopalan ◽  
H. C. Foley ◽  
M. A. Haque

We present results on the mechanical properties of single freestanding poly-furfuryl alcohol (PFA) nanowires (aspect ratio > 50, diameters 100–300 nm) from experiments conducted using a MEMS-based uniaxial tensile testing device in-situ inside the SEM. The specimens tested were pyrolyzed PFA nanowires (pyrolyzed at 800° C).


Author(s):  
T. M. Bazi ◽  
A. H. Ammouri ◽  
R. F. Hamade

We assess the effects of stretch rate on the mechanical properties of Prolene® (Ethicon, Gynecare, Somerville, NJ, USA), a knitted polypropylene mesh. Prolene®, consisting of macroporous knitted polypropylene, is considered here as a suitable proxy to midurethral tape (MUT) as well as to many other prosthesis products used in surgery applications. Such products are utilized to treat urine incontinence, pelvic organ prolapse, as well as hernia in humans. Of the mechanical properties of special significance are the following three properties: peak load (N), extension (%) at peak load, and linear stiffness (N/mm). Uniaxial tensile testing was performed on mesh samples on a universal testing machine and involved loading different samples at 5 cross-head speeds of: 1, 10, 50, 100, and 500 mm/min. The corresponding properties were measured under these 5 conditions. In order to minimize damage to the specimens at the jaws, special dual action pneumatically operated grips with rubber faced jaws were used to hold the samples in place. The effectiveness of these grips was illustrated by the fact that none of the failed samples broke at grips. Statistically significant findings suggest an increasing trend for Prolene® stiffness vs. stretch rate (R2 = 0.9679; two-tailed p value = 0.0025) where the stiffness increases 26.2% when increasing the displacement rate from 1 to 500 mm/min. For extension (%) at peak load, a decreasing trend was found vs. stretch rate (R2 = 0.81; two-tailed p value = 0.037) where increasing the displacement rate from 1 mm/min to 500 mm/min corresponds to a 22% decrease in the relative elongation of the mesh. No statistically significant dependence of peak load on stretch rate was found. These findings may help workers in the biomedical field develop suitable uniaxial tensile testing protocols of such materials.


Author(s):  
Amiruddin Mat Johari ◽  
Nur Aliaa Abd Rahman ◽  
Roseliza Kadir Basha ◽  
Azhari Samsu Baharudin ◽  
Mohd Afandi P. Mohammed ◽  
...  

Jackfruit frozen confection has been mechanically characterised in situ by using compression tests. There are no available studies on the mechanical behaviour of jackfruit frozen confection.   The aim of this study is to identify the mechanical properties of jackfruit frozen confections formulated with different concentrations of jackfruit puree. In this study, the experimental analyses are conducted using a compression test device made from LEGO Mindstorms EV3. The portable device is placed inside a freezer to enable the measurements to be done in low temperatures (-20oC). This is to overcome the limitation of an actual texture analyser which can only be operated at room temperature. The mechanical properties of jackfruit frozen confections at different jackfruit puree concentrations (10%, 20% and 30%) are obtained using the tester and analysed. The tests conducted are uniaxial compression, stress relaxation test and multi-step stress relaxation test. It has been observed that frozen confection with 20% jackfruit puree concentration (JF20) is able to withstand a higher force of compression (27.79kPa) compared to the ones with 10% (JF10) and 30% (JF30) concentrations, at 21.15kPa and 10.48kPa, respectively. For stress relaxation test, JF30 has the highest increasing stress for a strain of 0.05 to 0.2 but it decreases at a strain of 0.3 to 0.4. The results of the multi-step relaxation test on JF30 show agreement with the other two tests where the stress decays starting from the 3rd step until the 5th step of the test. This study provides information on the behaviour of jackfruit frozen confection when subjected to compression and stress that imitates the movement during consumption.


2020 ◽  
Vol 24 (5) ◽  
pp. 1007-1018
Author(s):  
Tatiana Osipok ◽  
◽  
Semen Zaides ◽  

The purpose of the article is to establish experimentally the effect of material inhomogeneity on the characteristics of strength ( σ в, σ 0.2) and plasticity (δ) on example of a rolled steel sheet. Uniaxial tensile testing was carried out on flat samples of hot-rolled sheet made of St3 alloy cut in three directions relative to rolling: along, across and at the angle of 450. The heterogeneity of structure was established by studying the fracture surface of the destroyed samples after tensile testing. A metallographic research and micromechanical testing (measurement of microhardness) of sections parallel to the fracture surface were carried out as well. The uniaxial tensile testing of flat samples resulted in obtaining the values of the characteristics of strength ( σ в, σ 0.2) and plasticity (δ). The analysis of fracture patterns, microstructure and microhardness values of the material allowed to reveal the structural heterogeneity caused by the presence of fibrousness and a banded ferrite-pearlite structure oriented along the deformation direction. The formation reason of the latter was the presence of oriented non-metallic inclusions - elongated plastic sulfides. The study determined that the material under investigation features the anisotropy of mechanical properties and structural heterogeneity. The values of the ultimate strength ( σ в) and yield strength ( σ 0.2) decrease from the longitudinal direction to the transverse direction (relative to the rolling direction) and vice versa (from the transverse to longitudinal direction) in the first case probably due to the influence of non-metallic inclusions (plastic sulfides) and, as a result, the banded ferrite-pearlite structure; in the second case due to the influence of fiber direction. The values of the relative elongation (δ) decrease from the longitudinal direction to the direction at an angle of 450 and then increase to the transverse direction as a result of different hardening of the material during plastic deformation. This is proved by the obtained microhardness values of the investigated sections and the values of the maximum applied loads during the tensile test. The obtained values are obviously the result of the influence of fiber orientation relative to the existing maximum tensile stresses.


1993 ◽  
Vol 308 ◽  
Author(s):  
M. Vill ◽  
D. P. Adams ◽  
S. M. Yalisove ◽  
J. C. Bilello

ABSTRACTA multiscalar approach is used to demonstrate the ability to control strength and toughness in microlaminates composed of molybdenum and tungsten. Here, two different thickness scales are utilized; an alternating stack of molybdenum and tungsten layers having thicknesses on the nanometer scale are combined with a layer of molybdenum having a thickness on the micron scale. The stack of thin layers acts as a strong phase and the thick layer acts as a tough phase. Multilayers of two configurations were fabricated which had total thicknesses of 31μm and 50μm. The tough phase thickness was 5μm for the 31μm multilayer and 1μm for the other. The strong phase contained a stack of 29 alternating 4nm thick layers of molybdenum and tungsten. Uniaxial tensile testing was performed using a standard Instron tensile testing machine, followed by optical analysis of specimen fracture surfaces. Fracture toughness ranged from 2.4 to 9.5MPa(m)1/2, and tensile strengths were observed from 126MPa to 883MPa. Control of mechanical properties was demonstrated by an increase in the upper bound fracture toughness from 2.7 to 9.5MPa(m)1/2 when the tough layer thickness was increased from 1μm to 5μm.


2002 ◽  
Vol 62 (1) ◽  
pp. 73-81 ◽  
Author(s):  
J. M. García Páez ◽  
A. Carrera ◽  
E. Jorge Herrero ◽  
I. Millán ◽  
A. Rocha ◽  
...  

2001 ◽  
Author(s):  
M. A. Haque ◽  
M. T. A. Saif

Abstract We present a MEMS-based technique for in-situ uniaxial tensile testing of freestanding thin films inside SEM and TEM. It integrates a freestanding thin film specimen with MEMS force sensors and structures to produce an on-chip tensile testing facility. Cofabrication of the specimen with force and displacement measuring mechanisms produces the following unique features: 1) Quantitative experimentation can be carried out in both SEM and TEM, 2) No extra gripping mechanism is required, 3) Specimen misalignment can be eliminated, 4) Pre-stress in specimen can be determined, and 5) Specimens with micrometer to nanometer thickness can be tested. We demonstrate the technique by testing a 200-nanometer thick Aluminum specimen in-situ in SEM. Significant strengthening and anelasticity were observed at this size scale.


Sign in / Sign up

Export Citation Format

Share Document