Evaluation of Pharmacological Effect of Morus Nigra Extract on Angiogenesis Using Chorioallantoic Membrane (CAM) Assay

2015 ◽  
Vol 5 ◽  
pp. 24
Author(s):  
Mumtaz Akhter
2016 ◽  
Vol 11 (3) ◽  
pp. 621
Author(s):  
Nazia Tabassum ◽  
Alamgeer . ◽  
Abdul Aziz ◽  
Bashir Ahmad

<p class="Abstract">The present study was aimed to evaluate the effect of <em>Teucrium stocksianum</em> on angiogenesis by using chorioallantoic membrane (CAM) assay. Fertilized eggs were incubated on the 5<sup>th</sup> day and dose of different dilutions 0.03%, 0.05%, 0.1%, and 0.5% of the plant extract was applied on 6<sup>th</sup> day. Evaluation of primary, secondary and tertiary blood vessels diameter and CAM area on 7<sup>th</sup> day by SPIP software. <em>T. stocksianum</em> showed antiangiogenic effect by reducing the diameter of CAM of blood vessels by applying the dilutions while significant results were obtained at dilution of 0.5%.</p><p> </p><p><strong> </strong></p>


2021 ◽  
Vol 12 ◽  
pp. 204173142110056
Author(s):  
Nupur Kohli ◽  
Vaibhav Sharma ◽  
Alodia Orera ◽  
Prasad Sawadkar ◽  
Nazanin Owji ◽  
...  

Due to the limitations of bone autografts, we aimed to develop new composite biomaterials with pro-angiogenic and osteogenic properties to be used as scaffolds in bone tissue engineering applications. We used a porous, cross-linked and slowly biodegradable fibrin/alginate scaffold originally developed in our laboratory for wound healing, throughout which deposits of calcium phosphate (CaP) were evenly incorporated using an established biomimetic method. Material characterisation revealed the porous nature and confirmed the deposition of CaP precursor phases throughout the scaffolds. MC3T3-E1 cells adhered to the scaffolds, proliferated, migrated and differentiated down the osteogenic pathway during the culture period. Chick chorioallantoic membrane (CAM) assay results showed that the scaffolds were pro-angiogenic and biocompatible. The work presented here gave useful insights into the potential of these pro-angiogenic and osteogenic scaffolds for bone tissue engineering and merits further research in a pre-clinical model prior to its clinical translation.


1999 ◽  
Vol 14 (Suppl_3) ◽  
pp. 18-19
Author(s):  
Ph. Kressin ◽  
E. Wolber ◽  
A. Meyhöfer-Malik ◽  
K. Diedrich ◽  
E. Malik

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 440 ◽  
Author(s):  
Aoi Komatsu ◽  
Kotaro Matsumoto ◽  
Tomoki Saito ◽  
Manabu Muto ◽  
Fuyuhiko Tamanoi

Chorioallantoic membrane assay (CAM assay) using fertilized chicken eggs has been used for the study of tumor formation, angiogenesis and metastasis. Recently, there is growing realization that this system provides a valuable assay for a patient-derived tumor model. Several reports establish that tumor samples from cancer patients can be used to reproduce tumor in the chicken egg. High transplantation efficiency has been achieved. In this review, we discuss examples of transplanting patient tumors. We then discuss critical issues that need to be addressed to pursue this line of experiments. The patient-derived chicken egg model (PDcE model) has an advantage over other models in its rapid tumor formation. This raises the possibility that the PDcE model is valuable for identifying optimum drug for each individual patient.


2020 ◽  
Vol 21 (20) ◽  
pp. 7574 ◽  
Author(s):  
Diana Heimes ◽  
Nadine Wiesmann ◽  
Jonas Eckrich ◽  
Juergen Brieger ◽  
Stefan Mattyasovszky ◽  
...  

The effective management of tissue integration and immunological responses to transplants decisively co-determines the success of soft and hard tissue reconstruction. The aim of this in vivo study was to evaluate the eligibility of extracorporeal shock wave therapy (ESWT) with respect to its ability to modulate angiogenesis and immune response to a collagen matrix (CM) for tissue engineering in the chorioallantoic membrane (CAM) assay, which is performed with fertilized chicken eggs. CM were placed on the CAM on embryonic development day (EDD) 7; at EDD-10, ESWT was conducted at 0.12 mJ/mm2 with 500 impulses each. One and four days later, angiogenesis represented by vascularized area, vessel density, and vessel junctions as well as HIF-1α and VEGF gene expression were evaluated. Furthermore, immune response (iNOS2, MMP-9, and MMP-13 via qPCR) was assessed and compared between ESWT- and non-ESWT-groups. At EDD-14, the vascularized area (+115% vs. +26%) and the increase in vessel junctions (+751% vs. +363%) were significantly higher in the ESWT-group. ESWT significantly increased MMP-9 gene expression at EDD-11 and significantly decreased MMP-13 gene expression at EDD-14 as compared to the controls. Using the CAM assay, an enhanced angiogenesis and neovascularization in CM after ESWT were observed. Furthermore, ESWT could reduce the inflammatory activity after a latency of four days.


2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700
Author(s):  
Kenn Foubert ◽  
Annelies Breynaert ◽  
Mart Theunis ◽  
Rita Van Den Bossche ◽  
Guido R.Y. De Meyer ◽  
...  

Angiogenesis, in which a vascular network is established from pre-existing vessels, is a complex multistep process. Mechanisms underlying angiogenesis can be investigated using a variety of in vitro, ex vivo and in vivo approaches. Evaluation of several promising plants and plant metabolites, including terpenoids, revealed promising anti-angiogenic activity. Since the maesasaponins displayed anti-angiogenic activity in the chick chorioallantoic membrane (CAM) assay, their activity was further investigated in several test systems. The rat aorta ring assay was compared with the placental vein assay and then selected for the ex vivo investigation of the saponins. Besides their effect on the viability of HUVEC, the anti-angiogenic capacity of the compounds was also investigated in an in vivo zebrafish assay. The activity of the saponins in the viability assay was more pronounced than in the rat aorta ring assay and similar to the effect observed in the CAM assay. The use of different test systems, however, implies different results in the case of saponins.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ikumi Tsuchiya ◽  
Takahiro Hosoya ◽  
Motoko Ushida ◽  
Kazuhiro Kunimasa ◽  
Toshiro Ohta ◽  
...  

Propolis, a resinous substance that honeybees collect to protect their beehive from enemies, is reported to have various biological activities. In our screening program to search for antiangiogenic compounds from propolis, the ethanol extracts of Okinawan propolis (EEOP) showed significant antiangiogenic activities in a tube formation assay with human umbilical vein endothelial cells (HUVECs)in vitroat 3.13 μg/mL and chorioallantoic membrane (CAM) assayin vivoat 25 μg/egg. To elucidate the active compounds of EEOP and their mode of action, we isolated some prenylated flavonoids from EEOP and found that nymphaeol-A had the strongest antiangiogenic activity among them. Nymphaeol-A significantly reducedin vivoneovessel formation in the CAM assay at 25 μg/egg. At the molecular level, nymphaeol-A markedly inactivated mitogen-activated protein kinase/ERK kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2), whose molecular activations signal new vessel formation in HUVECs. In addition, nymphaeol-A dose- and time-dependently induced caspase-dependent apoptosis in tube-forming HUVECs. Taken together, nymphaeol-A was shown to inhibit angiogenesis at least in part via inactivation of MEK1/2–ERK1/2 signaling and induction of caspase-dependent apoptosis. Okinawan propolis and its major component, nymphaeol-A, may be useful agents for preventing tumor-induced angiogenesis.


2018 ◽  
Vol 52 (4s) ◽  
pp. S246-S251
Author(s):  
Moonmun Dhara ◽  
Lopamudra Adhikari ◽  
Raja Majumder

Sign in / Sign up

Export Citation Format

Share Document