scholarly journals ENHANCED MECHANICAL AND MICROSTRUCTURAL PROPERTIES OF AL-MG-SI AGE HARDENING ALLOY TO HEAT TREATMENT ALLOY VIA FRICTION STIR WELDING.

2006 ◽  
Vol 519-521 ◽  
pp. 1163-1168 ◽  
Author(s):  
Pasquale Cavaliere ◽  
Antonio Squillace

The effect of processing parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by Friction Stir Welding was analysed in the present study. Different samples were produced by employing a fixed rotating speeds of 1600 RPM and by using the advancing speeds of the tool of 80 and 115 mm/min. All the welds were produced in direction perpendicular to the rolling one for both the alloys and by changing, for all the processing conditions, the alloy positioned on the advancing side of the tool. The mechanical properties of the joints were evaluated by room temperature tensile tests. Fatigue tests on the welds were carried out by using a resonant electro-mechanical testing machine under constant loading control up to 250 Hz sine wave loading. The fatigue tests were conducted in the axial total stress-amplitude control mode with R=smin/smax=0.1. The microstructural evolution of the material was analysed by optical observations of the welds cross sections and SEM observations of the fracture surfaces.


2015 ◽  
Vol 63 (2) ◽  
pp. 475-478
Author(s):  
I. Küçükrendeci

Abstract In the study, the mechanical and microstructural properties of friction stir welded EN AW-6060 Aluminum Alloy plates were investigated. The friction stir welding (FSW) was conducted at tool rotational speeds of 900, 1250, and 1500 rpm and at welding speeds of 100, 150 and 180 mm/min. The effect of the tool rotational and welding speeds such properties was studied. The mechanical properties of the joints were evaluated by means of micro-hardness (HV) and tensile tests at room temperature. The tensile properties of the friction stir welded tensile specimens depend significantly on both the tool rotational and welding speeds. The microstructural evolution of the weld zone was analysed by optical observations of the weld zones


2014 ◽  
Vol 592-594 ◽  
pp. 250-254 ◽  
Author(s):  
Sabitha Jannet ◽  
P. Koshy Mathews

The effect of processing parameters on the mechanical and microstructural properties of dissimilar AA6061 t6–AA5083 0 joints produced by friction stir welding was studied. Different samples were produced by varying the advancing speeds of the tool as 20 and 40 mm/min and by varying the alloy positioned on the advancing side of the tool. In the various trials the rotating speed is varied from 600 to 900 RPM. All the welds were produced perpendicular to the rolling direction for both the alloys. Micro hardness (HV) and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. Various tests were performed on the joints previously subjected to ageing. In order to analyze the micro structural evolution of the material, the welds’ zones were observed optically.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
N. Ethiraj ◽  
T. Sivabalan ◽  
C. Vijaya Raghavan ◽  
Shubham Mourya

Friction stir welding (FSW) is solid state joining process with more advantages than that of fusion welding. Nylon -6 is one of the engineering plastics used widely in various industrial applications. The main aim of this research work is to investigate the effect of tool rotational speed and tool traversing speed on the mechanical and microstructural properties of the nylon-6 butt welded joints made by FSW. The FSW process was performed in a computer numerically controlled (CNC) vertical milling machine using a cylindrical tool with threaded pin made of heat treated high carbon high chromium (HCHCr) steel. The tensile testing and microscopic examinations were carried out to study the mechanical and microstructural properties of the welded joints. In visual inspection, it is observed that the excessive flashes are observed on either sides of the weld line in all cases. From the results, it is observed that the maximum tensile properties are achieved in a joint made which is approximately 18% and 26% of the parent material’s ultimate tensile strength (UTS) and yield strength (YS) respectively with the tool rotational speed 1200 rpm and the tool traversing speed of 30 mm/min within the experimented process parameters. Overall, the tensile properties of the welded joints made using the experimented process parameters are very much lower than the parent material.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 861
Author(s):  
Chunxia Wang ◽  
Hongbo Cui ◽  
Xin Tang ◽  
Kezhun He

A wrought Al-11.3Si-0.6Mg alloy under hot extrusion (T1), solution treatment (T4), and solution treatment + artificial aging (T6) states were friction stir welded at welding speed of 100 mm/min and rotation rate of 800 rpm. The effect of prior heat-treatment on the microstructure and mechanical properties of the welds were investigated. The results show that the microstructures of the nugget zones have little dependence on the initial states of the base material. In the nugget zones, complete recrystallized structures with equaxied grains in the Al matrix were formed under all conditions. The Si particles in the nugget zones are almost unchanged compared with those of their base materials (BMs) in the three states. In contrast, the joint efficiency of the obtained welds was very sensitive to the initial material condition. The joint efficiency under the T1 state is more than 90% due to the fact that the microstructure is almost unchanged, except for the slight coarsening of the Al matrix grains and some of the Mg2Si phases during the friction stir welding process. However, the joint efficiency in the T4 and T6 conditions is only 77.22% and 62.03%, respectively. The relatively low weld strength in the T4 and T6 conditions is due to the elimination of the solid solution strengthening and age hardening effects during friction stir welding. The hardness distributions along the cross section of joints are all W-shaped under T1, T4, and T6 conditions.


Sign in / Sign up

Export Citation Format

Share Document