Lack of synsedimentary chemical alteration in polar carbonates (Ross Sea, Antarctica): Resolution of a conundrum

2020 ◽  
Vol 90 (5) ◽  
pp. 449-467 ◽  
Author(s):  
Tracy D. Frank ◽  
Noel P. James ◽  
Aaron I. Shultis

ABSTRACT Although rare in space and time, skeletal carbonates deposited on polar shelves hold great potential for improving understanding of the oceanography of the high latitudes. Low temperatures, low carbonate saturation states, and strong seasonality govern not only the nature of carbonate communities, but also how their deposits translate into the rock record. To understand the effects of early seafloor processes on preservation, we investigated late Quaternary carbonates recovered in piston cores from the Ross Sea, Antarctica. Sediments are unconsolidated skeletal gravels and sands that mantle areas of the outer shelf swept by strong bottom currents. Deposits are dominated locally by either stylasterine hydrocorals, barnacles, or bryozoans, which comprise assemblages with strong similarities to modern benthic communities. Radiocarbon ages indicate that carbonate factories were most prolific during the lead-up to the Last Glacial Maximum (Tartanian), when sediment input was minimized, and have been mostly dormant since. Results show that synsedimentary alteration is not substantially different in the temperate and polar realms with the significant exception of chemical diagenesis. As is common in temperate deposits, skeletal grains undergo disarticulation, fracturing, abrasion, and intense bioerosion. By contrast, cementation is absent and rare aragonite grains are preserved, indicating that taphonomic loss is not as prevalent as in temperate deposits. Primary skeletal microstructures and stable-isotope compositions are preserved, indicating that chemical alteration of grains is negligible. The preservation of aragonite in polar settings is herein attributed to low rates of organic-matter burial and very low temperatures, which strongly limit microbial activity. These factors allow interstitial waters to remain weakly supersaturated with respect to aragonite. Comparison with Permian analogs indicates that lithification is delayed until deposits reach burial depths at which chemical compaction proceeds. The ultimate end product is limestone with prominent compaction features and a tightly packed fabric. Calcitic skeletal material can retain primary geochemical compositions through the lithification process, although growth of burial cement in intraparticle porosity complicates selective sampling of unaltered material. In providing a cold-water end member for the spectrum of synsedimentary diagenetic processes, results highlight specific differences that should be accounted for when interpreting the deposits of polar, cold-water carbonate systems.

Ocean Science ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1017-1032
Author(s):  
Heike H. Zimmermann ◽  
Kathleen R. Stoof-Leichsenring ◽  
Stefan Kruse ◽  
Juliane Müller ◽  
Ruediger Stein ◽  
...  

Abstract. The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7 % of our sequences being assigned to diatoms across 18 different families, with 38.6 % of them being resolved to species and 25.8 % to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations – after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2 % of the assemblage point towards past sea-ice presence.


Antiquity ◽  
1996 ◽  
Vol 70 (269) ◽  
pp. 623-638 ◽  
Author(s):  
Peter J. Mitchell

In the rough and rugged country of the Lesotho highlands, rock-paintings and archaeological deposits in the rock-shelters record hunter-gatherer life-ways; at Sehonghong, a long sequence runs from recent times to and through the Last Glacial Maximum. Survey of the region's Middle and Later Stone Age sites shows a pattern of concentrations that likely applies to other parts of the Lesotho highlands.


2018 ◽  
Vol 55 (3) ◽  
pp. 283-294
Author(s):  
Christopher N. Jass ◽  
Devyn Caldwell ◽  
Christina I. Barrón-Ortiz ◽  
Alwynne B. Beaudoin ◽  
Jack Brink ◽  
...  

Late Quaternary faunal remains from three underwater settings in Cold Lake, Alberta and Saskatchewan, Canada, include at least 13 vertebrate taxa consistent with assemblages that postdate the Last Glacial Maximum (LGM). Seven new radiocarbon dates range from 10 350 ± 40 to 161 ± 23 years BP and provide insight into the post-LGM biotic history of east-central Alberta and west-central Saskatchewan. The presence of an essentially modern large mammal biota is suggested for the mid-Holocene, and possibly earlier, if the absence of extinct or extirpated taxa in association with Late Pleistocene Bison at the Alberta–Saskatchewan site is meaningful. Taphonomically, some of the remains suggest deposition in open environments during the Holocene, possibly when lake levels were lower. The recovery of late Quaternary faunal remains from a present-day lacustrine setting is novel, and suggests that similar records may occur in other lakes in western Canada, including those in areas with scarce Quaternary vertebrate records.


2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Alba Rey-Iglesia ◽  
Adrian M. Lister ◽  
Paula F. Campos ◽  
Selina Brace ◽  
Valeria Mattiangeli ◽  
...  

Late Quaternary climatic fluctuations in the Northern Hemisphere had drastic effects on large mammal species, leading to the extinction of a substantial number of them. The giant deer ( Megaloceros giganteus ) was one of the species that became extinct in the Holocene, around 7660 calendar years before present. In the Late Pleistocene, the species ranged from western Europe to central Asia. However, during the Holocene, its range contracted to eastern Europe and western Siberia, where the last populations of the species occurred. Here, we generated 35 Late Pleistocene and Holocene giant deer mitogenomes to explore the genetics of the demise of this iconic species. Bayesian phylogenetic analyses of the mitogenomes suggested five main clades for the species: three pre-Last Glacial Maximum clades that did not appear in the post-Last Glacial Maximum genetic pool, and two clades that showed continuity into the Holocene. Our study also identified a decrease in genetic diversity starting in Marine Isotope Stage 3 and accelerating during the Last Glacial Maximum. This reduction in genetic diversity during the Last Glacial Maximum, coupled with a major contraction of fossil occurrences, suggests that climate was a major driver in the dynamics of the giant deer.


Bothalia ◽  
1983 ◽  
Vol 14 (3/4) ◽  
pp. 445-449 ◽  
Author(s):  
L. Scott

Palynological evidence relating to the nature of Late Quaternary vegetation types and plant migrations in the Transvaal is briefly summarized. It is suggested that, after an early temperate, relatively moist phase and a subsequent relatively dry phase lasting until about 25 000 yr B.P., a vegetation-type with ericaceous elements developed. It resembled belts presently occurring above the treeline and was possibly widespread over the plains of the Transvaal during the last glacial maximum period. In the central parts of the province, warm semi-arid savanna subsequently expanded during the early Holocene and was followed by a more broad-leafed type of woodland in the late Holocene. This change probably resulted from slightly wetter and, at times, also slightly warmer and cooler conditions.


2013 ◽  
Vol 50 (12) ◽  
pp. 1178-1194 ◽  
Author(s):  
Jonathan Roger ◽  
Francky Saint-Ange ◽  
Patrick Lajeunesse ◽  
Mathieu J. Duchesne ◽  
Guillaume St-Onge

The geomorphology of the Eastern Canadian margin has been shaped by glacial processes during the Quaternary. Many studies have focused on the ice-sediment pathway through Hudson Strait to reconstruct the dynamics of the Laurentide Ice Sheet, and as a consequence, little is known on its marginal ice domes. Here we reconstruct the dynamics of two trough mouth fans (TMFs) offshore NE Newfoundland using sediment cores and radiocarbon ages supported by very high resolution seismic reflection profiles. These two TMFs, namely Notre Dame and Hawke, are fed by two glacial troughs incised in the bedrock. The TMFs show a complete sedimentary sequence from 30 ka BP to the beginning of the Holocene. The sampled sedimentary record on the upper slope extends back to a thick Heinrich event 3 (H3) deposit that corresponds to the end of the maximum extent of the Newfoundland ice dome. Above H3, a thick succession of turbidite deposits (>10 m) observed in both TMFs is correlated with periods of major meltwater supply from 28–29 to 17 ka BP. Our results show that the Last Glacial Maximum (LGM) period was characterized by major input of meltwater events stemming from the Newfoundland dome. The presence of H1 (∼17 ka BP) coincide with the end of the turbidite activity which is replaced by an open-water environment characterized by hemipelagic sediments rich in ice-rafted debris. The proglacial muddy sediment older than 13.3 ka BP on the shelf shows that ice was not grounded after H1, suggesting a very rapid retreat of the ice on the Newfoundland shelf after 17 ka BP.


2004 ◽  
Vol 61 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Sherilyn C. Fritz ◽  
Paul A. Baker ◽  
Tim K. Lowenstein ◽  
Geoffrey O. Seltzer ◽  
Catherine A. Rigsby ◽  
...  

Despite the hypothesized importance of the tropics in the global climate system, few tropical paleoclimatic records extend to periods earlier than the last glacial maximum (LGM), about 20,000 years before present. We present a well-dated 170,000-year time series of hydrologic variation from the southern hemisphere tropics of South America that extends from modern times through most of the penultimate glacial period. Alternating mud and salt units in a core from Salar de Uyuni, Bolivia reflect alternations between wet and dry periods. The most striking feature of the sequence is that the duration of paleolakes increased in the late Quaternary. This change may reflect increased precipitation, geomorphic or tectonic processes that affected basin hydrology, or some combination of both. The dominance of salt between 170,000 and 140,000 yr ago indicates that much of the penultimate glacial period was dry, in contrast to wet conditions in the LGM. Our analyses also suggest that the relative influence of insolation forcing on regional moisture budgets may have been stronger during the past 50,000 years than in earlier times.


Sign in / Sign up

Export Citation Format

Share Document