scholarly journals Growth, biomass, and chlorophyll-a and carotenoid content of Nannochloropsis sp. strain BJ17 under different light intensities

2017 ◽  
Vol 16 (1) ◽  
pp. 15
Author(s):  
Muhammad Fakhri ◽  
Nasrullah Bai Arifin ◽  
Anik Martina Hariati ◽  
Ating Yuniarti

<p class="Pa3"><strong>ABSTRACT </strong></p><p> </p><p class="Pa5"><em>Nannochloropsis </em>sp. has been identified as sources of live feed and pigment in aquaculture. To increase the production, the optimal environmental conditions for microalgae are required. Light intensity is one of the important factors that significantly affects the biomass and pigment of microalgae. The study aimed to determine the effect of light intensity (1,500; 3,000; and 4,500 lux) on growth, biomass production, chlorophyll-a, and carotenoid content of <em>Nannochloropsis </em>sp. strain BJ17. The results showed that different light intensities significantly affected the growth, biomass, chlorophyll-a and carotenoid contents of <em>Nannochloropsis </em>sp. strain BJ17. Increasing light intensity resulted in the increase of the growth rate, biomass, chlorophyll-a, and carotenoid contents of <em>Nannochloropsis </em>sp. strain BJ17. The cell achieved the highest specific growth rate of 1.729 %/day and the cell concentration of 43.333×106 cell/mL at a light intensity of 4,500 lux. The highest chlorophyll-a and carotenoid concentrations of algae were obtained at 4,500 lux (8.304 μg/mL and 3.892 μg/mL, respectively). This study suggested that increasing light intensity led to the increase in the growth, biomass, chlorophyll-a, and carotenoid content of <em>Nannochloropsis </em>sp. strain BJ17.</p><p> </p><p class="Pa5">Keywords: carotenoid, chlorophyll, biomass, growth rate, light intensity</p><p> </p><p> </p><p class="Pa3"><strong>ABSTRAK </strong></p><p> </p><p class="Pa5"><em>Nannochloropsis </em>sp. diketahui sebagai sumber pakan alami dan pigmen pada budidaya perikanan. Budidaya pada kondisi lingkungan yang optimal diperlukan untuk meningkatkan produksi mikroalga. Intensitas cahaya merupakan salah satu faktor esensial yang secara signifikan mempengaruhi biomassa dan pigmen mikroalga. Tujuan penelitian ini adalah untuk menentukan pengaruh intensitas cahaya yang berbeda (1.500, 3.000, and 4.500 lux) terhadap pertumbuhan, produksi biomassa, klorofil-a, dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17. Hasil menunjukkan bahwa intensitas cahaya yang berbeda berpengaruh secara signifikan terhadap pertumbuhan, biomassa dan klorofil-a dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17. Semakin tinggi intensitas cahaya maka laju pertumbuhan, biomassa, kandungan klorofil-a dan total karotenoid <em>Nannochloropsis </em>sp. strain BJ17 semakin tinggi. Laju pertumbuhan spesifik tertinggi 1,729%/hari dan konsentrasi sel maksimum tertinggi 43,333×106 sel/mL dihasilkan pada intensitas cahaya 4.500 lux. Konsentrasi klorofil-a (8,304 μg/mL) dan karotenoid (3,892 μg/mL) tertinggi juga diperoleh pada intensitas cahaya 4.500 lux. Studi ini menunjukkan bahwa peningkatan intensitas cahaya berperan dalam meningkatkan pertumbuhan, produksi biomassa, klorofil-a, dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17.</p><p> </p><p>Kata kunci: karotenoid, klorofil, biomassa, pertumbuhan, intensitas cahaya</p>

Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Maria N. Metsoviti ◽  
George Papapolymerou ◽  
Ioannis T. Karapanagiotidis ◽  
Nikolaos Katsoulas

In this research, the effect of solar irradiance on Chlorella vulgaris cultivated in open bioreactors under greenhouse conditions was investigated, as well as of ratio of light intensity in the 420–520 nm range to light in the 580–680 nm range (I420–520/I580–680) and of artificial irradiation provided by red and white LED lamps in a closed flat plate laboratory bioreactor on the growth rate and composition. The increase in solar irradiance led to faster growth rates (μexp) of C. vulgaris under both environmental conditions studied in the greenhouse (in June up to 0.33 d−1 and in September up to 0.29 d−1) and higher lipid content in microalgal biomass (in June up to 25.6% and in September up to 24.7%). In the experiments conducted in the closed bioreactor, as the ratio I420–520/I580–680 increased, the specific growth rate and the biomass, protein and lipid productivities increased as well. Additionally, the increase in light intensity with red and white LED lamps resulted in faster growth rates (the μexp increased up to 0.36 d−1) and higher lipid content (up to 22.2%), while the protein, fiber, ash and moisture content remained relatively constant. Overall, the trend in biomass, lipid, and protein productivities as a function of light intensity was similar in the two systems (greenhouse and bioreactor).


2012 ◽  
Vol 72 (2) ◽  
pp. 343-351 ◽  
Author(s):  
MC. Bittencourt-Oliveira ◽  
B. Buch ◽  
TC. Hereman ◽  
JDT. Arruda-Neto ◽  
AN. Moura ◽  
...  

Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju (Ordem Nostocales) is one of the most troublesome bloom-forming species in Brazil. Understanding the population dynamics of the different morphotypes of C. raciborskii (straight and coiled) could assist in the prediction of favourable conditions for the proliferation of this potentially toxin-producing species. The aim of the present study was to assess the effects of two different light intensities and temperatures on the growth rate and morphology of the trichomes of the straight and coiled morphotypes. For such, two non-toxin producing strains of C. raciborskii were used - one with a coiled trichome (ITEP31) and another with a straight trichome (ITEP28). The strains were cultured in BG-11 medium in a climatic chamber under controlled conditions. Two light intensities (30 and 90 µmol.m-2.s-1 ) were combined at temperatures of 21 and 31 °C and the growth rate and morphological changes were analysed. The morphotypes responded differently to the different temperatures and light intensities. Both strains exhibited faster growth velocities when submitted to higher light intensity and temperature. The lower temperature and higher luminosity hampered the development of both strains. Variations in cellular morphology and an absence of akinetes in both strains were related to the lower temperature (21 °C). The coiled morphotype demonstrated considerable phenotype plasticity, changing the morphology of trichome throughout its growth curve. Although molecular analysis does not sustain the separation of the morphotypes as distinct species, their different eco-physiological responses should be considered further knowledge of extreme importance for the population control of these potentially toxic organisms.


2020 ◽  
Vol 17 (35) ◽  
pp. 338-345
Author(s):  
Alexander B. RUCHIN

The guppy, Poecilia reticulata, is a model for many ichthyological studies. The effect of light on juvenile growth has been studied on the Poecilia reticulata. Studies have been conducted in twenty-liter aquariums. For experiments on the fish arbitrary choice of light intensity (light transmission behavior), it was used radiant pans of organic glass 150 x 15 x 15 cm divided by transparent semi-partitions into ten communicating compartments. The specific growth rate has been determined after the experiments. It increases with the light level increasing. The growth rate is minimal at 0 lx in all series of experiments. It was shown that the sharpest increase in the specific growth rate of guppies occurred when the illumination changed from 0 to 200 lx. A further increase in the intensity of illumination practically did not affect the growth of guppies. Also, the guppy juvenile behavior has been studied in special trays at different light from 3200 to 5900 lx. The motor activity of guppies increases by 30% in lightgradient conditions. The frequency (25 sec) and length of guppies stay (28.3 sec) are the highest in the compartment with 4700 lx. The preferential light zone expands if the juveniles are starving. As the period of starvation increased, guppies began to swim almost equally often and linger in different light zones. Thus, high light conditions stimulate the search behavior and activity of guppies. To grow guppies in production conditions, high illumination is necessary.


Author(s):  
Leyla USLU

In the study, Porphyridium cruentum was cultured under laboratory conditions at 20±2°C, 16:8 (light:dark) photoperiod and continuous aeration to different salinity (20‰, 30‰, 40‰) and two different light intensities (37 µmol m-2s-1 photon and 110 µmol m-2s-1 photon) and growth was determined. Dry matter, optical density and chlorophyll a parameter were used to determine growth. The best growth was determined in culture with a salinity of 30‰ at 110 µmol m-2s-1 photon light intensity. In this group, the optical density (OD) was 1.504±0.003 and the dry matter amount was 1.327gl-1. In the case of 37µmol µmol m-2s-1 photon light intensity, the optical density values were found to be similar in groups with 30‰ and 50‰ salinity and were found to be 1.234±0.004 and 1.215±0.002, respectively. The amounts of dry matter were also similar; 1.168gl-1 and 1.159gl-1, respectively. While the lowest growth was in the culture at 37 µmol m-2s-1 photon light intensity and 20‰ salinity. The optical density obtained on the last day of this group was 1.165±0.004 and the dry matter amount was determined as 0.986gl-1. The amount of chlorophyll a was determined in the cultured groups at the best 37 µmol m-2s-1 photon light intensity.


Author(s):  
Yuzuru Ikeda ◽  
Kingo Ito ◽  
Gen Matsumoto

The effect of light intensity on the course of embryonic development of squid (Heterololigo bleekeri) was examined. Heterololigo bleekeri embryos at an early stage were incubated in the egg cases under six to seven gradients of light intensities which varied from constant darkness to intensive light >1000 lx (12L:12D for all experimental groups except for the constant darkness group). Duration of hatching in every experimental group ranged from seven to 15 days with a peak for ≈30–50% of total number of hatchlings. However, there were no particular relationships between light intensities and duration of embryonic development, duration of hatching, number of hatchlings at hatching peak, and body size of hatchlings. In all groups, body size of hatchlings increased up to seven days post-hatching and thereafter did not change remarkably. Just after hatching, strongly positive photo taxis was observed for H. bleekeri


Weed Science ◽  
1978 ◽  
Vol 26 (5) ◽  
pp. 432-433 ◽  
Author(s):  
R. M. Devlin ◽  
C. N. Saras ◽  
M. J. Kisiel ◽  
A. S. Kostusiak

Chlorophyll content of wheat (Triticum aestivum L. ‘Mericopa’) and corn (Zea mays L. ‘Merit’) treated with the herbicide fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone} and grown under high light intensity (10.8 klux), was markedly reduced. Corn and wheat germinated from seeds treated with 10 uM fluridone and grown for 6 days were almost completely bleached. Under low light intensity (108 lux) the influence of fluridone on chlorophyll production was greatly reduced. Under very low light intensity (21.5 lux) this influence was almost completely lost. The effect of light on the activity of fluridone suggests that the inhibition of carotenoid production may represent the mode of action of this herbicide. This study shows that the carotenoid content of wheat or corn drops dramatically when these plants are treated with fluridone.


1994 ◽  
Vol 45 (1) ◽  
pp. 43 ◽  
Author(s):  
TJ Wassenberg ◽  
BJ Hill

The emergence behaviour of eight species of commercial prawns (between 25.0 and 30.0 mm carapace length) was studied in the laboratory. All except Penaeus merguiensis were nocturnal: they emerged from the substratum in the evening when the light was dimmed and buried themselves in the morning, usually before dawn. P. merguiensis generally remained on the substratum during the day. The species can be grouped on the basis of their behaviour: the first group (P. plebejus and P. latisulcatus) was most sensitive to light, the second group (P. semisulcatus, Metapenaeus ensis, P. esculentus, M. endeavouri and M. bennettae) was less sensitive to light, and the third (P. merguiensis) was least sensitive to light. To find out what triggered emergence, two species (P. esculentus and P. plebejus) were exposed to different rates of light dimming at dusk. Both species responded to absolute light intensity, but the response of P. plebejus was affected by the rate of change of light intensity. The different responses of the species to different light intensities explains some of the differences in catchability in a multi-species prawn fishery.


1999 ◽  
Vol 47 (4) ◽  
pp. 231-236
Author(s):  
Shimon Lavee ◽  
Elizabeth Van Volkenburgh ◽  
Robert Cleland E.

The effect of light intensity on primary bean leaf unfolding and elongation was studied with intact and excised 10-day-old plants grown under red light. Continuous light of 40 μmol; m−2S−1 was enough to induce maximal leaf expansion both on intact and excised bean plants. Lower light intensities had a partial effect. The growth rate during the first 24 h in light was linearly related to light intensity up to 130 μmol; m−2S−1, although this light intensity was already supra-optimal for final leaf size. The minimal amount of light energy needed for full leaf expansion was about 15 mol photons m−2. The mode of light application, level of intensity, and irradiance duration were not critical when the total energy requirement was fulfilled. Under insufficient light applications for full leaf expansion, interrupted irradiance and longer low light intensity application induced leaf elongation more efficiently. Generally, the effect of different white light intensities on primary bean leaf expansion was the same on both intact and excised red-light-grown plants.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 583b-583 ◽  
Author(s):  
Trinidad Reyes ◽  
Terril A. Nell ◽  
Charles A. Conover ◽  
James E. Barrett

Effects of three light intensities (564, 306 and 162 μmol m-2 s-1) and three fertilizer rates (220, 440 and 880 mg/15 cm pot, weekly) were evaluated on acclimatization potential of Chamaedorea elegans. Treatments were applied during four months under greenhouse conditions after which plants were placed indoors (20 μmol m-2 s-1, 21±2C and 50% RH) for two months. Light compensation point (LCP) was significantly reduced by decreasing light intensity and increasing fertilizer rates. Leaf and root fresh and dry weights increased with irradiance while shoots were not affected. Chlorophyll a levels were higher in plants grown under the lowest light intensity. Carbohydrate content is being analyzed and anatomical examination of leaves studied. Plant performance indoors will be discussed. These studies demonstrate that Chamaedorea, a monocot, acclimatizes similarly to dicots.


2019 ◽  
Author(s):  
Kalpana Arambam ◽  
Pradyut Biswas ◽  
Soibam Khogen Singh ◽  
A. B. Patel ◽  
Alok Kumar Jena ◽  
...  

AbstractTwo sequential indoor rearing trials each of 21 days duration were conducted to investigate the effect of light intensity and photoperiod respectively on the growth and survival of Ompok bimaculatus larvae. In first trial, five different light intensities viz. 0, 300, 500, 900, 1200 lx were applied randomly to 800 larvae (0.003 g; 0.51 cm) stocked in triplicate following a completely randomized design into aquarium (30.0 x 15.0 x 15.0 cm) tanks. Sequentially, in second trial, five photoperiod cycles (light: dark, L: D) namely, 24L: 0D, 16L: 8D, 12L: 12D, 8L: 16D and 0L: 24D in combination with the best performing light intensity (300 lx) as observed from the first trial were employed in triplicates in similar set up. From the first trial, significantly higher survival was observed in 0 and 300 lx, whereas growth was highest in 900 lx (P < 0.05). In the second trial, survival was higher in continuous darkness (0L: 24D), whereas, maximum growth was recorded in 24L: 0D and 16L: 8D groups (P < 0.05). Performance index (PI) showed no significant difference (P > 0.05) among 0 and 300 lx light intensities, but were reduced at higher light intensities. The lowest PI was found in 12L: 12D and 8L: 16D condition but did not have any effect in other photoperiod cycles. Overall, from the present study it can be concluded that growth of the larvae is found to be higher in higher light intensity (900lx) and longer photoperiodic cycles (24L: 0D and 16L: 8D), however, better survival was recorded in total dark conditions suggesting that continuous dark condition is recommended for better hatchery performance of the larvae.


Sign in / Sign up

Export Citation Format

Share Document