Impact of Rapid Salinity Variation on Aquaculture Organisms Caused by Water Drainage from an Estuary Sluice

2020 ◽  
Vol 111 (sp1) ◽  
Author(s):  
Cuiling Jiang ◽  
Jun Wang ◽  
Peng Zhang ◽  
Youheng Wang ◽  
Xin Guo ◽  
...  
1989 ◽  
Vol 17 (1) ◽  
pp. 66-84
Author(s):  
A. R. Williams

Abstract This is a summary of work by the author and his colleagues, as well as by others reported in the literature, that demonstrate a need for considering a vehicle, its tires, and the road surface as a system. The central theme is interaction at the footprint, especially that of truck tires. Individual and interactive effects of road and tires are considered under the major topics of road aggregate (macroscopic and microscopic properties), development of a novel road surface, safety, noise, rolling resistance, riding comfort, water drainage by both road and tire, development of tire tread compounds and a proving ground, and influence of tire wear on wet traction. A general conclusion is that road surfaces have both the major effect and the greater potential for improvement.


2012 ◽  
Vol 170-173 ◽  
pp. 2924-2928
Author(s):  
Sheng Biao Chen ◽  
Yun Zhi Tan

In order to measure the water drainage volume in soil mechanical tests accurately, it develop a new method which is based on principles of optics. And from both physical and mathematic aspects, it deduces the mathematic relationship between micro change in displacement and the increment projected on screen. The result shows that total reflection condition is better than refraction condition. What’s more, the screen could show the water volume micro variation clearly, so it can improve the accuracy of measurement.


2017 ◽  
Vol 45 (4) ◽  
pp. 319-328 ◽  
Author(s):  
Lawrence V. Stanislawski ◽  
Kornelijus Survila ◽  
Jeffrey Wendel ◽  
Yan Liu ◽  
Barbara P. Buttenfield

Trees ◽  
2001 ◽  
Vol 16 (2-3) ◽  
pp. 195-203 ◽  
Author(s):  
Anja Moritz-Zimmermann ◽  
Keith A. McGuinness ◽  
Manfred Küppers

2019 ◽  
Vol 23 (3) ◽  
pp. 1431-1451 ◽  
Author(s):  
Floris Loys Naus ◽  
Paul Schot ◽  
Koos Groen ◽  
Kazi Matin Ahmed ◽  
Jasper Griffioen

Abstract. In the southwestern coastal region of Bangladesh, options for drinking water are limited by groundwater salinity. To protect and improve the drinking water supply, the large variation in groundwater salinity needs to be better understood. This study identifies the palaeo and present-day hydrological processes and their geographical or geological controls that determine variation in groundwater salinity in Upazila Assasuni in southwestern Bangladesh. Our approach involved three steps: a geological reconstruction, based on the literature; fieldwork to collect high-density hydrological and lithological data; and data processing to link the collected data to the geological reconstruction in order to infer the evolution of the groundwater salinity in the study area. Groundwater freshening and salinization patterns were deduced using PHREEQC cation exchange simulations and isotope data were used to derive relevant hydrological processes and water sources. We found that the factor steering the relative importance of palaeo and present-day hydrogeological conditions was the thickness of the Holocene surface clay layer. The groundwater in aquifers under thick surface clay layers is controlled by the palaeohydrological conditions prevailing when the aquifers were buried. The groundwater in aquifers under thin surface clay layers is affected by present-day processes, which vary depending on present-day surface elevation. Slightly higher-lying areas are recharged by rain and rainfed ponds and therefore have fresh groundwater at shallow depth. In contrast, the lower-lying areas with a thin surface clay layer have brackish–saline groundwater at shallow depth because of flooding by marine-influenced water, subsequent infiltration and salinization. Recently, aquaculture ponds in areas with a thin surface clay layer have increased the salinity in the underlying shallow aquifers. We hypothesize that to understand and predict shallow groundwater salinity variation in southwestern Bangladesh, the relative elevation and land use can be used as a first estimate in areas with a thin surface clay layer, while knowledge of palaeohydrogeological conditions is needed in areas with a thick surface clay layer.


2005 ◽  
Vol 64 (2) ◽  
pp. 125-137 ◽  
Author(s):  
Poul Christoffersen ◽  
Jan A. Piotrowski ◽  
Nicolaj K. Larsen

AbstractThe foreground of Elisebreen, a retreating valley glacier in West Svalbard, exhibits a well-preserved assemblage of subglacial landforms including ice-flow parallel ridges (flutings), ice-flow oblique ridges (crevasse-fill features), and meandering ridges (infill of basal meltwater conduits). Other landforms are thrust-block moraine, hummocky terrain, and drumlinoid hills. We argue in agreement with geomorphological models that this landform assemblage was generated by ice-flow instability, possibly a surge, which took place in the past when the ice was thicker and the bed warmer. The surge likely occurred due to elevated pore-water pressure in a thin layer of thawed and water-saturated till that separated glacier ice from a frozen substratum. Termination may have been caused by a combination of water drainage and loss of lubricating sediment. Sedimentological investigations indicate that key landforms may be formed by weak till oozing into basal cavities and crevasses, opening in response to accelerated ice flow, and into water conduits abandoned during rearrangement of the basal water system. Today, Elisebreen may no longer have surge potential due to its diminished size. The ability to identify ice-flow instability from geomorphological criteria is important in deglaciated terrain as well as in regions where ice dynamics are adapting to climate change.


1979 ◽  
Vol 1979 (286) ◽  
pp. 83-90
Author(s):  
Masatsune SAKIYAMA ◽  
Tosao HOSOKAWA ◽  
Takayuki ABE
Keyword(s):  

2021 ◽  
pp. 1-29
Author(s):  
Eric Sonny Mathew ◽  
Moussa Tembely ◽  
Waleed AlAmeri ◽  
Emad W. Al-Shalabi ◽  
Abdul Ravoof Shaik

Two of the most critical properties for multiphase flow in a reservoir are relative permeability (Kr) and capillary pressure (Pc). To determine these parameters, careful interpretation of coreflooding and centrifuge experiments is necessary. In this work, a machine learning (ML) technique was incorporated to assist in the determination of these parameters quickly and synchronously for steady-state drainage coreflooding experiments. A state-of-the-art framework was developed in which a large database of Kr and Pc curves was generated based on existing mathematical models. This database was used to perform thousands of coreflood simulation runs representing oil-water drainage steady-state experiments. The results obtained from the corefloods including pressure drop and water saturation profile, along with other conventional core analysis data, were fed as features into the ML model. The entire data set was split into 70% for training, 15% for validation, and the remaining 15% for the blind testing of the model. The 70% of the data set for training teaches the model to capture fluid flow behavior inside the core, and then 15% of the data set was used to validate the trained model and to optimize the hyperparameters of the ML algorithm. The remaining 15% of the data set was used for testing the model and assessing the model performance scores. In addition, K-fold split technique was used to split the 15% testing data set to provide an unbiased estimate of the final model performance. The trained/tested model was thereby used to estimate Kr and Pc curves based on available experimental results. The values of the coefficient of determination (R2) were used to assess the accuracy and efficiency of the developed model. The respective crossplots indicate that the model is capable of making accurate predictions with an error percentage of less than 2% on history matching experimental data. This implies that the artificial-intelligence- (AI-) based model is capable of determining Kr and Pc curves. The present work could be an alternative approach to existing methods for interpreting Kr and Pc curves. In addition, the ML model can be adapted to produce results that include multiple options for Kr and Pc curves from which the best solution can be determined using engineering judgment. This is unlike solutions from some of the existing commercial codes, which usually provide only a single solution. The model currently focuses on the prediction of Kr and Pc curves for drainage steady-state experiments; however, the work can be extended to capture the imbibition cycle as well.


Sign in / Sign up

Export Citation Format

Share Document