scholarly journals The Prospects for Wind Energy Development in the Republic of Belarus

Author(s):  
Y. S. Petrusha ◽  
N. A. Papkova

The use of wind turbines to create wind energy is one of the main alternatives to the traditional technologies of power generation. The exclusion of combustion products emissions at thermal power plants that operate on hydrocarbon fuel, as well as the exclusion of the fuel component of the cost of electricity generation makes the wind power technology very attractive. However, the rigor of the operation requirements of wind turbines as part of power systems, low density of the flow of primary energy source and the lack of control of it, low utilization of installed capacity, limited operating life, shutdowns in the conditions of squally gusts of wind and ice formation, large areas of alienated land, the impact of noise and infrasonic vibrations and the problems of utilization of large-size structural elements and foundations require a comprehensive analysis of conditions of wind turbines application. Despite the absence of desert areas and of restrictions on the construction of ultra-high structures the analysis of natural and climatic conditions of Belarus demonstrates favorable natural and landscape conditions for the development of wind power generation. The principal task is to choose the location of wind power plants with due regard to environmental requirements, temperature and humidity conditions, terrain and geological features of the location. The results of calculations of the wind flow conditions showed the preference for the joint application of the Weibull and Rayleigh functions that provide the confidence interval of the approximation of the wind speed function, while the terrain specific features make it possible to expect to obtain higher values of the established capacity utilization factor. The development of a distributed energy generation accompanied by Smart Grid technology wide use over electric networks (which would provide new opportunities for consumers and make it possible to eliminate the monopoly of powerful power plants and to reduce burden of basic costs of big power production) ought to be considered as obvious prospect of wind power plants application.

2022 ◽  
Vol 7 ◽  
pp. 9
Author(s):  
Seyed Amir Kaboli ◽  
Reyhaneh Nazmabadi

There continues to be significant attention and investment in wind power generation, which can supply a high percentage of the global demand for renewable energy if harvested efficiently. The research study is based on techno-economic analysis of the feasibility of implementing wind power generation in Kuwait with a power generation capacity of 105 MW based on 50 wind turbines, which has a major requirement for clean energy. The study focused on three main areas of analysis and numerical modeling using the RETScreen software tool. The first area involved evaluating the performance and efficacy of generating wind power by collecting, analyzing, and modeling data on observed wind levels, wind turbine operation, and wind power generation. The second area comprised an environmental impact review to assess the environmental benefits of implementing wind power. The third area involved economic analysis of installing wind power in Kuwait. The analysis was undertaken to assess the energy recovery time for wind energy and determine the mitigation of global warming and pollution levels, the decrease of toxic emissions, and any cost savings from implementing clean energy systems in Kuwait. Additionally, sensitivity analysis was undertaken to determine the impact of certain variables in the modeling process. The results are used to estimate that the energy price would be $0.053 per kWh for a power generation capacity of 105 MWh based on an initial cost of $168 million and O&M of $5 million for 214,000 MWh of electricity exported to the grid. Moreover, the wind turbine farm will potentially avoid the emission of approximately 1.8 million tonnes of carbon dioxide per year, thereby saving approximately $9 million over 20 years spent installing carbon capture systems for conventional power plants. The wind farm containing a simple wind turbine is estimated to have a payback period of 9.1 years.


Author(s):  
S. K. Sheryazov ◽  
S. S. Issenov ◽  
R. M. Iskakov ◽  
A. B. Kaidar

PURPOSE. Conduct a detailed analysis of existing wind turbines. Analyze the role, place and features of the functioning of wind power plants. Provide various options for generators and schemes for converting wind energy into electricity. Provide recommendations for improving the reliability of wind turbines in smart grids.METHODS. The article was prepared using analytical methods, statistical, theoretical, factorial and technical methods.RESULTS. A fixed speed asynchronous generator used in a wind power conversion system (WECS) without a power converter interface draws a significant portion of the reactive power from the grid. This configuration features simple, reliable operation. Wind turbine asynchronous generator with dual power supply. can improve overall power conversion efficiency by performing maximum power point tracking (MPPT), and an increase in speed of about 30% can improve dynamic performance and increase resilience to system disturbances that are not available for turbine types 1 and 2. The use of full-scale 100% power converters will significantly increase the productivity of SPEV wind energy conversion systems, but will slightly increase the cost of the power converter, up to 7% - 12% of the total equipment cost. By using a large number of pole pairs for all types of permanent magnet synchronous generator (PMG), the turbine gearbox can be removed. This type of wind energy conversion system is more resilient to grid disruptions compared to type 1, 2 and 3 wind systems. The review shows that types 3 and 4 technologies are used to most efficiently sell and recycle wind turbines in electricity markets.CONCLUSION. The article analyzes the features of the functioning of wind power plants operating on the grid. Various options for generators and schemes for converting wind energy into electricity are presented. A detailed analysis of existing wind turbines is provided. Recommendations are given for improving the reliability and efficiency of wind power plants in smart grids.


Author(s):  
Vаsіly Kоrdоnsky

There are many advantages of wind energy, including energy, environmental, economic. Relatively low investment in wind energy projects compared to traditional energy industries. The total kinetic energy of wind in the world can be estimated as 80 times higher than the total energy consumption by humans. And although only a certain fraction of this total can be used for energy needs, the future. The development of the technology itself has enormous potential. The article introduces and provides a brief analysis and historical background of existing designs of low-power wind power plants of the world's major manufacturers; the purpose of research on the proposed topic is indicated. Proposed and developed and described a promising scheme of a wind farm for the needs of small agricultural facilities, which makes it possible to receive electric current at low wind speeds in all natural and climatic zones of Ukraine. It has been established that low-power wind power plants are one of the promising areas for obtaining electrical energy and meeting the needs for small agricultural facilities. The proposed scheme for generating electrical energy. This design of a wind turbine can produce both DC and AC power for stand-alone or grid systems. The calculation of the wind turbine rotor diameter has been reduced. The advantages and disadvantages of wind energy in comparison with traditional energy industries are described. Brief conclusions are made on the proposed design of the wind farm, this will improve the environment, reducing the impact of anthropogenic factors on the environment and also, taking into account the constant increase in energy prices, save money, since such independent small wind farms allow small agricultural facilities to be provided with energy sources.


2008 ◽  
Vol 47 (12) ◽  
pp. 3099-3116 ◽  
Author(s):  
Federico Cassola ◽  
Massimiliano Burlando ◽  
Marta Antonelli ◽  
Corrado F. Ratto

Abstract In contrast to conventional power generation, wind energy is not a controllable resource because of its stochastic nature, and the cumulative energy input of several wind power plants into the electric grid may cause undesired fluctuations in the power system. To mitigate this effect, the authors propose a procedure to calculate the optimal allocation of wind power plants over an extended territory to obtain a low temporal variability without penalizing too much the overall wind energy input into the power system. The procedure has been tested over Corsica (France), the fourth largest island in the Mediterranean Basin. The regional power supply system of Corsica could be sensitive to large fluctuations in power generation like wind power swings caused by the wind intermittency. The proposed methodology is based on the analysis of wind measurements from 10 anemometric stations located along the shoreline of the island, where most of the population resides, in a reasonably even distribution. First the territory of Corsica has been preliminarily subdivided into three anemological regions through a cluster analysis of the wind data, and the optimal spatial distribution of wind power plants among these regions has been calculated. Subsequently, the 10 areas around each station have been considered independent anemological regions, and the procedure to calculate the optimal distribution of wind power plants has been further refined to evaluate the improvements related to this more resolved spatial scale of analysis.


2022 ◽  
Vol 4 (1) ◽  
pp. 14-34
Author(s):  
Ali M. H. A. Khajah ◽  
Simon P. Philbin

There continues to be significant attention and investment in wind power generation, which can supply a high percentage of the global demand for renewable energy if harvested efficiently. The research study is based on a techno-economic analysis of the feasibility of implementing wind power generation in Kuwait for 105 MW of electricity generation based on 50 wind turbines, which is a major requirement for clean energy. The study focused on three main areas of analysis and numerical modelling using the RETScreen software tool. The first area involved evaluating the performance and efficacy of generating wind power by collecting, analysing, and modelling data on observed wind levels, wind turbine operation, and wind power generation. The second area comprised an environmental impact report to assess the environmental benefits of implementing wind power. The third area involved economic analysis of installing wind power in Kuwait. The analysis was undertaken to determine the energy recovery time for wind energy and determine the mitigation of global warming and pollution levels, the decrease of toxic emissions, and any cost savings from implementing clean energy systems in Kuwait. Additionally, sensitivity analysis was undertaken to determine the impact of certain variables in the modelling process. The results were used to estimate that the energy price would be $0.053 per kWh for a power generation capacity of 105 MWh based on an initial cost of US $168 million and O&M of $5 million for 214,000 MWh of electricity exported to the grid. Moreover, the wind turbine farm will potentially avoid the emission of approximately 1.8 million t of carbon dioxide per year, thereby saving about $9 million over 20 years spent through installing carbon capture systems for conventional power plants. The wind farm is estimated to have a payback time of 9.1 years.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1828 ◽  
Author(s):  
Izabela Piasecka ◽  
Patrycja Bałdowska-Witos ◽  
Józef Flizikowski ◽  
Katarzyna Piotrowska ◽  
Andrzej Tomporowski

Controlling the system—the environment of power plants is called such a transformation—their material, energy and information inputs in time, which will ensure that the purpose of the operation of this system or the state of the environment, is achieved. The transformations of systems and environmental inputs and their goals describe the different models, e.g., LCA model groups and methods. When converting wind kinetic energy into electricity, wind power plants emit literally no harmful substances into the environment. However, the production and postuse management stages of their components require large amounts of energy and materials. The biggest controlling problem during postuse management is wind power plant blades, followed by waste generated during their production. Therefore, this publication is aimed at carrying out an ecological, technical and energetical transformation analysis of selected postproduction waste of wind power plant blades based on the LCA models and methods. The research object of control was eight different types of postproduction waste (fiberglass mat, roving fabric, resin discs, distribution hoses, spiral hoses with resin, vacuum bag film, infusion materials residues, surplus mater), mainly made of polymer materials, making it difficult for postuse management and dangerous for the environment. Three groups of models and methods were used: Eco-indicator 99, IPCC and CED. The impact of analysis objects on human health, ecosystem quality and resources was controlled and assessed. Of all the tested waste, the life cycle of resin discs made of epoxy resin was characterized by the highest level of harmful technology impact on the environment and the highest energy consumption. Postuse control and management in the form of recycling would reduce the negative impact on the environment of the tested waste (in the perspective of their entire life cycle). Based on the results obtained, guidelines and models for the proecological postuse control of postproduction polymer waste of wind power plants blades were proposed.


Inventions ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 59
Author(s):  
Hasanali Khojasteh ◽  
Younes Noorollahi ◽  
Mojtaba Tahani ◽  
Mehran Masdari

Nowadays, by increasing energy demand and considering the importance of environmental issues in recent decades, the use of renewable energies is expanding. Among renewable energies, wind power and its technology are growing and evolving more rapidly. Resource assessment in Iran has revealed the significant potential of wind energy around the country. To further develop wind energy in the country and create large-scale wind power plants, the consideration of distributed power generation using small wind turbines for applications in agricultural and residential use is needed. Conventional small wind turbines and small wind lens turbines have been developed in recent years. In this research project, a small wind lens turbine is designed. The advantages of this turbine are an increased production capacity and reduced cut-in speed and noise pollution. In this study, a lens (or shroud) is added to a small turbine, and the maximized annual energy production (AEP) and minimization of the levelized cost of energy (LCOE) are modeled. We applied the NSGA-II algorithm for optimization to find the best answer. The input parameters in the objective function of the AEP are cut-in, cut-out, rated speeds, scale factor, and shape factor. Additionally, the input parameters in the objective function of the LCOE are the power production, initial capital cost, annual operating expenses, and balance of energy. The results indicate that installing a wind lens turbine in Kish Island led to an LCOE decrease of 56% on average, and we can see an 83% increase in the AEP. In the Firoozkooh area, an average reduction of 59% in the LCOE and 74% increase in the AEP for a wind lens turbine is observed.


2013 ◽  
Vol 846-847 ◽  
pp. 195-198
Author(s):  
Xiang Wen Zhang ◽  
Ran Chen ◽  
Chun Wang

The paper analyzes the current wind power plants monitoring system problems and the impact on the grid. Proposed structure for smart monitoring system of wind power plants based on IEC61400-25 and IEC61850.The system uses three level of station level and bay level and process level. System uses information modeling of object-oriented approach for wind power plants. Using maps to IEC61850-8-1 MMS protocol stack communication service mapping is proposed. Wind power plants monitoring system and substation monitoring system uses the integrated design.


Sign in / Sign up

Export Citation Format

Share Document