scholarly journals RECYCLING OF FERROUS METAL SHAVINGS

Author(s):  
S. L. Rovin ◽  
L. E. Rovin ◽  
T. M. Zayac ◽  
O. M. Valickaya

The most advanced and universal way of chips recycling of ferrous metals is the technology of direct chips remelting in rotational tilting furnaces (RBF) directly at the enterprises-sources of waste generation. However common practice of iron and steel chips recycling is based on its briquetting and subsequent remelting in traditional furnaces.For cost reduction when chip briquetting and organization of hot briquetting sections in places of its formation highly efficient equipment – rotational dryer and RBF is proposed. The possibility and effectiveness of developed furnaces for lowand high-temperature chip heating in briquetting lines is proved. Thermal efficiency of such furnaces when dispersed materials heating is much higher than drum or feed-through furnaces. Hot briquetting of shavings reduces the pressing force, which reduces the specific energy consumption. The use of rotary kilns can reduce technological operations and equipment of production sites for the manufacture of briquettes

2020 ◽  
Vol 1 (3) ◽  
pp. 17-26
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Marius Florin Dragoescu ◽  
Felicia Cosmulescu

Abstract                                                         The aim of the paper was the experimental manufacture of cellular glass from glass waste and coal ash as raw material and silicon carbide as a foaming agent, using the unconventional microwave heating technique. This heating technique, although known since the last century and recognized worldwide as fast and economical, is not yet industrially applied in high temperature thermal processes. The cellular glass manufacturing process requires high temperatures and the use of microwaves in this process is the originality of the work. The experiments aimed at producing thermal insulating materials with high porosity and low thermal conductivity for building construction similar in terms of quality to those manufactured industrially by conventional techniques, but with lower energy consumption. The obtained samples had adequate characteristics (apparent density 0.22-0.32 g/cm3, porosity 85.5-90.0%, thermal conductivity 0.043-0.060 W/m·K, compressive strength 1.23-1.34 MPa), and the specific energy consumption was low (0.84-0.89 kWh/kg). Theoretically, given the use of microwave equipment on an industrial scale, this consumption comparable in value to that industrially achieved by conventional techniques could decrease by up to 25%.


Holzforschung ◽  
2014 ◽  
Vol 68 (2) ◽  
pp. 195-201 ◽  
Author(s):  
Iina Solala ◽  
Toni Antikainen ◽  
Mehedi Reza ◽  
Leena-Sisko Johansson ◽  
Mark Hughes ◽  
...  

Abstract Spruce was submitted to high-temperature (150°C–170°C) refining for 2 or 5 min to produce thermomechanical pulp (TMP) fibers with decreased electrical energy consumption. The pulp was characterized in terms of specific energy consumption as well as tensile and surface properties. The fibers from high-temperature TMP contained more surface lignin even if all sample types usually broke at the S1–S2 cell wall region. They also produced significantly weaker paper sheets, whereas their dry zero-span strength did not suffer substantial losses, indicating decreased fiber-fiber bonding. Tensile strength properties were also determined of a bisphenol-A-epichlorohydrin-based epoxy resin mixed with 5% fiber as a test for fiber-matrix compatibility in composite applications. Based on these preliminary results, high-temperature TMP shows potential for composite reinforcement due to its lower tendency to aggregate and its better compatibility with the tested matrix material.


DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 273-281
Author(s):  
Bernardo Herrera ◽  
Juan Rivas ◽  
Jorge Muñoz ◽  
Karen Cacua

This paper presents an experimental study carried out in an industrial furnace for frits production using different configurations of burners based on different combustion techniques such as enriched air combustion, flat-flame oxy-combustion and preheater air combustion. The residence time of combustion gases inside the furnace also was modified. Several combustion configurations were tested and its effects on productivity and thermal energy specific consumption and efficiency were determined. The results show that higher residence time of the combustion gases can decrease significantly the specific consumption of fuel, while the change of the burners and combustion techniques did not show significant effects on decreasing the energy consumption. However, it is highlighted that the oxy-combustion flat-flame burners produced the lowest specific consumption of fuel. Even though the experiments were conducted in a furnace for frit production, the corresponding results can also be applied to guide or improve other industrial high temperature processes.


Author(s):  
Arijit Mukherjee ◽  
Soumendra Nath Basu ◽  
Sayan Paul

The steel industry being highly energy intensive in nature is one the major consumers of energy. The iron and steel industry is the largest energy consuming manufacturing sector in the world. It is therefore that the question of fuel or energy has been of the highest importance in steel making, and one can boldly claim that all other conditions remaining constant, saving or wasting of fuel can make the difference between a profit or a loss of a steel plant. Energy conservation in steel plants is very crucial to ensure the competitiveness of the steel producing industries and to minimise environmental impacts. India's leading iron and steel companies, scored averages at best in Centre for Science and environment green rating test. The Indian iron and steel sector's energy consumption of 6.6 GCal per tonne, is 50 per cent higher than the global best practice. The integrated steel plants in India have the opportunities to strengthen their operations and minimise energy losses and wastages to reduce specific energy consumption by 5-6%. To reduce the gaps between India and developed countries we have to follow the technological advancement and implementation of innovative strategies at every stage of the operation of steel plants. The specific energy consumption in the Indian steel industry is high compared to that in advanced countries. Data for four integrated steel plants in India have been analysed. World crude steel production reached 1.621 million tones (Mt) in 2015. To meet the needs of our growing population, steel use is projected to increase by 1.5 times that of present level by 2050.


2016 ◽  
Vol 856 ◽  
pp. 131-139 ◽  
Author(s):  
Matthias Henninger ◽  
Wolfgang Schlüter ◽  
Dominik Jeckle ◽  
Jörg Schmidt

This study, which focuses on analyzing aluminum melting and die casting procedures is part of the Smart Melting project in the research network Green Factory Bavaria (GFB). The aim of the present research project is to investigate these procedures and to suggest measures to increase the overall energy efficiency. The analysis starts with the capture of the operating structure, the relations between supply and consumption of liquid aluminum and an evaluation of aluminum furnaces themselves. The study concentrates on shaft furnaces whose specific energy consumption is 25 % higher than stated by the manufacturers. At the same time the melting capacity of the furnaces ranges at the lower end according to the manufacturer's data. The reason for this deviation is a discontinuous operation mode due to demand fluctuations. Consequently the flue gas has still a high temperature which means a high waste of energy. Based on these facts the furnace charge and operation mode have to be optimized and the high temperature flue gas can be used to preheat the pig aluminum.A numerical model of aluminum furnaces is applied to investigate this optimization potential. This model can simulate either a single aluminum furnace (case 1) or a furnace integrated in the entire manufacturing plant (case 2). The advantage of case 1 is the furnace's operation on its most efficient point because there is no influence of the die casting process. In case 1 an improvement of the furnace charge leads to a higher capacity utilization and therefore to a reduction of 30 % specific energy consumption and a 50 % increase of melting capacity. Whereas in case 2 the simulation of the entire manufacturing plant results in a rise of 25 % melting capacity and a 16 % decrease of specific energy consumption. The simulation proved increasing energy efficiency due to preheating the pig aluminum in both cases.


Author(s):  
Vivek R. Gandhewar

Among all the metal industries, the iron and steel industries are the most energy intensive sectors in India. Worldwide the use of induction furnaces in steel industries especially in foundries has increased exponentially. A great deal of research is dedicated to identify the factors that affect the performance of the furnace. It is observed that quantity of molten metal produced per batch, average time required for production per batch, electricity consumption per ton ,raw material in ratio, power supply on and off time, thickness of refractory lining are some of the crucial factors that are responsible for improving the productivity of Induction Furnace. This paper presents the results of a study where an attempt is made to optimize the specific energy consumption and alternatively productivity. The correlation between various parameters was found in order to optimize the results. To get the optimum results TOPSIS was applied .Finally, the results of the study confirm the common connotation that less specific energy consumption leads to more productivity. Academicians and practitioners could use the results as a guideline for studying effects of various induction furnace parameters


Sign in / Sign up

Export Citation Format

Share Document