scholarly journals Tribological properties of friction composites modified by the suspended particles of exhaust flue gases

Author(s):  
T. A. Akhmetov ◽  
V. K. Merinov ◽  
N. V. Kargapolova

The possibility of using the deposited suspended particles of electric arc furnaces as heat-resistant modifying additives for friction composites is considered. It is shown that the precipitated particles obtained during the smelting of steel of different grades have identical morphology and are a homogeneous mechanical mixture consisting mainly of spherical particles of no more than 1 µm in size.It is established that the composites on the basis of the fluoropolymer, modified by precipitated particles obtained in the smelting of steel of various sizes have different tribological properties. This is due to the difference in the chemical composition of the deposited particles.It was found that the use of deposited particles in composite materials allows to vary the value of the dynamic friction coefficient in a wider range, in particular to obtain higher and stable values, while the wear resistance of modified friction composites is more than 500 times higher than the same index of the matrix polymer – polytetrafluoroethylene.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qin Lian ◽  
Chunxu Yang ◽  
Jifei Cao

The transition between static and kinetic frictions of steel/shale pairs has been studied. It was found that the coefficient of friction decreased exponentially from static to dynamic friction coefficient with increasing sliding displacement. The difference between static and dynamic friction coefficients and the critical distance Dc under the dry friction condition is much larger than that under the lubricated condition. The transition from static to dynamic friction coefficient is greatly affected by the normal load, quiescent time, and sliding velocity, especially the lubricating condition. Maintaining continuous lubrication of the contact area by the lubricant is crucial to reduce or eliminate the stick-slip motion. The results provide an insight into the transition from static to dynamic friction of steel/shale pairs.


Author(s):  
Misa Kawaguchi ◽  
Tomohiro Fukui ◽  
Kenichi Funamoto ◽  
Suguru Miyauchi ◽  
Toshiyuki Hayase

Abstract Experimental studies were performed to characterize the effects of the microstructure on the rheology of suspension. We focused on the change in the dispersion of the suspended particles under different particle Reynolds number conditions. Suspension flow through a microchannel with a circular cross-section was measured, and the radial dispersion of suspended particles and the velocity profiles were obtained. It was suggested that the particle dispersion could be changed owing to the difference in inertial force acting on the particles.


2009 ◽  
Vol 620-622 ◽  
pp. 421-424 ◽  
Author(s):  
Yong Hui Zhang ◽  
Zhi Chao Xiao ◽  
Jian Feng Yang ◽  
Ji Ping Wang ◽  
Zhi Hao Jin

C/C-SiC brake materials were prepared by improved chemical liquid vaporized infiltration (CLVI) combined with liquid silicon infiltration (LSI) process, which needed less than thirty hours. The microstructure and frictional properties of the material were investigated. The density and porosity of the C/C-SiC brake material were 2.05 g/cm3 and 4.8%, respectively. The average dynamic friction coefficient of the materials was about 0.36, and the friction coefficient was stable. The average linear wear rate was less than 4.7 µm cycle-1 for rotating and stationary disk. The matrix composition and microstructure resulted in the high frictional performances.


Author(s):  
R.A. Herring

Rapid thermal annealing (RTA) of ion-implanted Si is important for device fabrication. The defect structures of 2.5, 4.0, and 6.0 MeV As-implanted silicon irradiated to fluences of 2E14, 4E14, and 6E14, respectively, have been analyzed by electron diffraction both before and after RTA at 1100°C for 10 seconds. At such high fluences and energies the implanted As ions change the Si from crystalline to amorphous. Three distinct amorphous regions emerge due to the three implantation energies used (Fig. 1). The amorphous regions are separated from each other by crystalline Si (marked L1, L2, and L3 in Fig. 1) which contains a high concentration of small defect clusters. The small defect clusters were similar to what had been determined earlier as being amorphous zones since their contrast was principally of the structure-factor type that arises due to the difference in extinction distance between the matrix and damage regions.


Vestnik MEI ◽  
2019 ◽  
Vol 6 ◽  
pp. 83-90
Author(s):  
Anatoliy M. Kruchinin ◽  
◽  
Mikhail Ya. Pogrebisskiy ◽  
Elena S. Ryazanova ◽  
Andrey Yu. Chursin ◽  
...  

Author(s):  
P B Parejiya ◽  
B S Barot ◽  
P K Shelat

The present study was carried out to fabricate a prolonged design for tramadol using Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer). Matrix tablet formulations were prepared by direct compression of Kollidon SR of a varying proportion with a fixed percentage of tramadol. Tablets containing a 1:0.5 (Drug: Kollidon SR) ratio exhibited a rapid rate of drug release with an initial burst effect. Incorporation of more Kollidon SR in the matrix tablet extended the release of drug with subsequent minimization of the burst effect as confirmed by the mean dissolution time, dissolution efficiency and f2 value. Among the formulation batches, a direct relationship was obtained between release rate and the percentage of Kollidon SR used. The formulation showed close resemblance to the commercial product Contramal and compliance with USP specification. The results were explored and explained by the difference of micromeritic characteristics of the polymers and blend of drug with excipients. Insignificant effects of various factors, e.g. pH of dissolution media, ionic strength, speed of paddle were found on the drug release from Kollidon-SR matrix. The formulation followed the Higuchi kinetic model of drug release. Stability study data indicated stable character of Batch T6 after short-term stability study.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Gianluca Costagliola ◽  
Tobias Brink ◽  
Julie Richard ◽  
Christian Leppin ◽  
Aude Despois ◽  
...  

AbstractWe report experimental measurements of friction between an aluminum alloy sliding over steel with various lubricant densities. Using the topography scans of the surfaces as input, we calculate the real contact area using the boundary element method and the dynamic friction coefficient by means of a simple mechanistic model. Partial lubrication of the surfaces is accounted for by a random deposition model of oil droplets. Our approach reproduces the qualitative trends of a decrease of the macroscopic friction coefficient with applied pressure, due to a larger fraction of the micro-contacts being lubricated for larger loads. This approach relates direct measurements of surface topography to realistic distributions of lubricant, suggesting possible model extensions towards quantitative predictions.


Sign in / Sign up

Export Citation Format

Share Document