scholarly journals Effect of Dopant Concentration on the Structural, Optical and Sensing Properties of (SnO2)1-x(TiO2:CuO)x Sprayed Films

2019 ◽  
Vol 16 (2) ◽  
pp. 0361
Author(s):  
Mahmood Et al.

      Spray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO2 , CuO) amount. The effect of mixing concentration on the optical properties of the films was also investigated. The reflectance and transmittance spectra  in the wavelength range (300-1100) nm were employed to determine the optical properties such as energy band gap (Eg) and refractive index (n),  extinction coefficient  (k) , real and imaginary parts of dielectric constants (ε1, ε2) for (SnO2)1-x(TiO2:CuO)x films. The energy band gap omit of which showed reduction from (3.65 to 2.2) eV by reducing of SnO2 amount from (100 to 70) % .The reduction of energy band gap was ascribed to the new tail states introduced in the band gap of tin oxide. The sensitivity of the prepared sensor film was determined resistance difference of the films when exposed to oxidizing gas. The data declared that the mixed SnO2 films have better sensitivity in comparison with unmixed films.

2019 ◽  
Vol 16 (2) ◽  
pp. 0361
Author(s):  
Mahmood Et al.

      Spray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO2 , CuO) amount. The effect of mixing concentration on the optical properties of the films was also investigated. The reflectance and transmittance spectra  in the wavelength range (300-1100) nm were employed to determine the optical properties such as energy band gap (Eg) and refractive index (n),  extinction coefficient  (k) , real and imaginary parts of dielectric constants (ε1, ε2) for (SnO2)1-x(TiO2:CuO)x films. The energy band gap omit of which showed reduction from (3.65 to 2.2) eV by reducing of SnO2 amount from (100 to 70) % .The reduction of energy band gap was ascribed to the new tail states introduced in the band gap of tin oxide. The sensitivity of the prepared sensor film was determined resistance difference of the films when exposed to oxidizing gas. The data declared that the mixed SnO2 films have better sensitivity in comparison with unmixed films.


2008 ◽  
Vol 3 ◽  
pp. 97-102 ◽  
Author(s):  
Dinu Patidar ◽  
K.S. Rathore ◽  
N.S. Saxena ◽  
Kananbala Sharma ◽  
T.P. Sharma

The CdS nanoparticles of different sizes are synthesized by a simple chemical method. Here, CdS nanoparticles are grown through the reaction of solution of different concentration of CdCl2 with H2S. X-ray diffraction pattern confirms nano nature of CdS and has been used to determine the size of particle. Optical absorption spectroscopy is used to measure the energy band gap of these nanomaterials by using Tauc relation. Energy band gap ranging between 3.12 eV to 2.47 eV have been obtained for the samples containing the nanoparticles in the range of 2.3 to 6.0 nm size. A correlation between the band gap and size of the nanoparticles is also established.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 55 ◽  
Author(s):  
Hong-Ping Ma ◽  
Jia-He Yang ◽  
Jian-Guo Yang ◽  
Li-Yuan Zhu ◽  
Wei Huang ◽  
...  

Atomic scale control of the thickness of thin film makes atomic layer deposition highly advantageous in the preparation of high quality super-lattices. However, precisely controlling the film chemical stoichiometry is very challenging. In this study, we deposited SiOx film with different stoichiometry by plasma enhanced atomic layer deposition. After reviewing various deposition parameters like temperature, precursor pulse time, and gas flow, the silicon dioxides of stoichiometric (SiO2) and non-stoichiometric (SiO1.8 and SiO1.6) were successfully fabricated. X-ray photo-electron spectroscopy was first employed to analyze the element content and chemical bonding energy of these films. Then the morphology, structure, composition, and optical characteristics of SiOx film were systematically studied through atomic force microscope, transmission electron microscopy, X-ray reflection, and spectroscopic ellipsometry. The experimental results indicate that both the mass density and refractive index of SiO1.8 and SiO1.6 are less than SiO2 film. The energy band-gap is approved by spectroscopic ellipsometry data and X-ray photo-electron spectroscopy O 1s analysis. The results demonstrate that the energy band-gap decreases as the oxygen concentration decreases in SiOx film. After we obtained the Si-rich silicon oxide film deposition, the SiO1.6/SiO2 super-lattices was fabricated and its photoluminescence (PL) property was characterized by PL spectra. The weak PL intensity gives us greater awareness that more research is needed in order to decrease the x of SiOx film to a larger extent through further optimizing plasma-enhanced atomic layer deposition processes, and hence improve the photoluminescence properties of SiOx/SiO2 super-lattices.


2013 ◽  
Vol 27 (30) ◽  
pp. 1350170 ◽  
Author(s):  
ROSHAN ALI ◽  
R. KHANATA ◽  
BIN AMIN ◽  
G. MURTAZA ◽  
S. BIN OMRAN

Structural, elastic, electronic and optical properties as well as chemical bonding of the binary alkali metal selenides M 2 Se ( M = Li , Na , K , Rb ) were calculated using the full potential linearized augmented plane method. From the elastic constants it is inferred that these compounds are brittle in nature. The results of the electronic band structure show that Na 2 Se has a direct energy band gap (Γ-Γ), Li 2 Se has an indirect energy band gap (Γ- X), while K 2 Se and Rb 2 Se have an indirect energy band gap (X-Γ). Analysis of the charge distribution plots reveals a dominated ionic bonding in the herein studied compounds. Additionally, we have calculated the optical properties, namely, the real and the imaginary parts of the dielectric function, refractive index, extinction coefficient, optical conductivity and reflectivity for radiation up to 30.0 eV. All these compounds have direct energy band gap greater than 3.1 eV suggesting their use for manufacturing high frequency devices.


2017 ◽  
Vol 52 (17) ◽  
pp. 9990-10000 ◽  
Author(s):  
Y. Jiménez-Flores ◽  
M. Suárez-Quezada ◽  
J. B. Rojas-Trigos ◽  
L. Lartundo-Rojas ◽  
V. Suárez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document