scholarly journals Estimating the Reliability Function of (2+1) Cascade Model

2019 ◽  
Vol 16 (2) ◽  
pp. 0395
Author(s):  
Khaleel Et al.

This paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.

2019 ◽  
Vol 16 (2) ◽  
pp. 0395
Author(s):  
Khaleel Et al.

This paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.


Author(s):  
Shuguang Song ◽  
Hanlin Liu ◽  
Mimi Zhang ◽  
Min Xie

In this paper, we propose and study a new bivariate Weibull model, called Bi-levelWeibullModel, which arises when one failure occurs after the other. Under some specific regularity conditions, the reliability function of the second event can be above the reliability function of the first event, and is always above the reliability function of the transformed first event, which is a univariate Weibull random variable. This model is motivated by a common physical feature that arises fromseveral real applications. The two marginal distributions are a Weibull distribution and a generalized three-parameter Weibull mixture distribution. Some useful properties of the model are derived, and we also present the maximum likelihood estimation method. A real example is provided to illustrate the application of the model.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yifan Sun ◽  
Xiang Xu

As a widely used inertial device, a MEMS triaxial accelerometer has zero-bias error, nonorthogonal error, and scale-factor error due to technical defects. Raw readings without calibration might seriously affect the accuracy of inertial navigation system. Therefore, it is necessary to conduct calibration processing before using a MEMS triaxial accelerometer. This paper presents a MEMS triaxial accelerometer calibration method based on the maximum likelihood estimation method. The error of the MEMS triaxial accelerometer comes into question, and the optimal estimation function is established. The calibration parameters are obtained by the Newton iteration method, which is more efficient and accurate. Compared with the least square method, which estimates the parameters of the suboptimal estimation function established under the condition of assuming that the mean of the random noise is zero, the parameters calibrated by the maximum likelihood estimation method are more accurate and stable. Moreover, the proposed method has low computation, which is more functional. Simulation and experimental results using the consumer low-cost MEMS triaxial accelerometer are presented to support the abovementioned superiorities of the maximum likelihood estimation method. The proposed method has the potential to be applied to other triaxial inertial sensors.


Author(s):  
Hisham Mohamed Almongy ◽  
Ehab M. Almetwally

This paper discussed robust estimation for point estimation of the shape and scale parameters for generalized exponential (GE) distribution using a complete dataset in the presence of various percentages of outliers. In the case of outliers, it is known that classical methods such as maximum likelihood estimation (MLE), least square (LS) and maximum product spacing (MPS) in case of outliers cannot reach the best estimator. To confirm this fact, these classical methods were applied to the data of this study and compared with non-classical estimation methods. The non-classical (Robust) methods such as least absolute deviations (LAD), and M-estimation (using M. Huber (MH) weight and M. Bisquare (MB) weight) had been introduced to obtain the best estimation method for the parameters of the GE distribution. The comparison was done numerically by using the Monte Carlo simulation study. The two real datasets application confirmed that the M-estimation method is very much suitable for estimating the GE parameters. We concluded that the M-estimation method using Huber object function is a suitable estimation method in estimating the parameters of the GE distribution for a complete dataset in the presence of various percentages of outliers.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 626
Author(s):  
Abdalla Rabie ◽  
Junping Li

In this article, we are concerned with the E-Bayesian (the expectation of Bayesian estimate) method, the maximum likelihood and the Bayesian estimation methods of the shape parameter, and the reliability function of one-parameter Burr-X distribution. A hybrid generalized Type-II censored sample from one-parameter Burr-X distribution is considered. The Bayesian and E-Bayesian approaches are studied under squared error and LINEX loss functions by using the Markov chain Monte Carlo method. Confidence intervals for maximum likelihood estimates, as well as credible intervals for the E-Bayesian and Bayesian estimates, are constructed. Furthermore, an example of real-life data is presented for the sake of the illustration. Finally, the performance of the E-Bayesian estimation method is studied then compared with the performance of the Bayesian and maximum likelihood methods.


2003 ◽  
Vol 33 (7) ◽  
pp. 1340-1347 ◽  
Author(s):  
Lianjun Zhang ◽  
Kevin C Packard ◽  
Chuangmin Liu

Four commonly used estimation methods were employed to fit the three-parameter Weibull and Johnson's SB distributions to the tree diameter distributions of natural pure and mixed red spruce (Picea rubens Sarg.) – balsam fir (Abies balsamea (L.) Mill.) stands, respectively, in northeastern North America. The results indicated that the Weibull and the Johnson's SB distributions were, in general, equally suitable for modeling the diameter frequency distributions of this forest type, but the relative performance directly depended on the estimation method used. In this study, the linear regression methods for Johnson's SB were found to give the lowest mean Reynolds' error indices. The conditional maximum likelihood for Johnson's SB and the maximum likelihood estimation for Weibull produced comparable results. However, moment- or mode-based methods were not well suited to the observed diameter distributions that were typically positively skewed, reverse-J, and mound shapes.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1949
Author(s):  
Mukhtar M. Salah ◽  
M. El-Morshedy ◽  
M. S. Eliwa ◽  
Haitham M. Yousof

The extreme value theory is expanded by proposing and studying a new version of the Fréchet model. Some new bivariate type extensions using Farlie–Gumbel–Morgenstern copula, modified Farlie–Gumbel–Morgenstern copula, Clayton copula, and Renyi’s entropy copula are derived. After a quick study for its properties, different non-Bayesian estimation methods under uncensored schemes are considered, such as the maximum likelihood estimation method, Anderson–Darling estimation method, ordinary least square estimation method, Cramér–von-Mises estimation method, weighted least square estimation method, left-tail Anderson–Darling estimation method, and right-tail Anderson–Darling estimation method. Numerical simulations were performed for comparing the estimation methods using different sample sizes for three different combinations of parameters. The Barzilai–Borwein algorithm was employed via a simulation study. Three applications were presented for measuring the flexibility and the importance of the new model for comparing the competitive distributions under the uncensored scheme. Using the approach of the Bagdonavicius–Nikulin goodness-of-fit test for validation under the right censored data, we propose a modified chi-square goodness-of-fit test for the new model. The modified goodness-of-fit statistic test was applied for the right censored real data set, called leukemia free-survival times for autologous transplants. Based on the maximum likelihood estimators on initial data, the modified goodness-of-fit test recovered the loss in information while the grouping data and followed chi-square distributions. All elements of the modified goodness-of-fit criteria tests are explicitly derived and given.


2021 ◽  
pp. 240-251
Author(s):  
Hakeem Hussain Hamad ◽  
Nada Sabah Karam

This paper discusses reliability of the stress-strength model. The reliability functions 𝑅1 and 𝑅2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities 𝑅1, 𝑅2 were estimated by three methods, namely the Maximum Likelihood,  Least Square, and Regression.  A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between the three estimators is Maximum likelihood estimators.  


Author(s):  
A. S. Ogunsanya ◽  
E. E. E. Akarawak ◽  
W. B. Yahya

In this paper, we compared different Parameter Estimation method of the two parameter Weibull-Rayleigh Distribution (W-RD) namely; Maximum Likelihood Estimation (MLE), Least Square Estimation method (LSE) and three methods of Quartile Estimators. Two of the quartile methods have been applied in literature, while the third method (Q1-M) is introduced in this work. The methods have been applied to simulate data. These methods of estimation were compared using Error, Mean Square Error and Total Deviation (TD) which is also known as Sum Absolute Error Estimate (SAEE). The analytical results show that the performances of all the parameter estimation methods were satisfactory with data set of Weibull-Rayleigh distribution while degree of accuracy is determined by the sample size. The proposed quartile (Q1-M) method has the least Total Deviation and MSE. In addition, the quartile methods perform better than MLE for the simulated data. In particular, the proposed quartile methods (Q1-M) have an added advantage of simplicity in usage than MLE methods.


Author(s):  
Alexander Robitzsch

The Rasch model is one of the most prominent item response models. In this article, different item parameter estimation methods for the Rasch model are compared through a simulation study. The type of ability distribution, the number of items, and sample sizes were varied. It is shown that variants of joint maximum likelihood estimation and conditional likelihood estimation are competitive to marginal maximum likelihood estimation. However, efficiency losses of limited-information estimation methods are only modest. It can be concluded that in empirical studies using the Rasch model, the impact of the choice of an estimation method with respect to item parameters is almost negligible for most estimation methods. Interestingly, this sheds a somewhat more positive light on old-fashioned joint maximum likelihood and limited information estimation methods.


Sign in / Sign up

Export Citation Format

Share Document