scholarly journals Batch and Flow-Injection Spectrophotometric Determination of Procaine HCl in Pharmaceutical Preparations Via Using Diazotization and Coupling Reaction

2012 ◽  
Vol 9 (3) ◽  
pp. 521-531
Author(s):  
Baghdad Science Journal

Simple and sensitive batch and Flow-injection spectrophotometric methods for the determination of Procaine HCl in pure form and in injections were proposed. These methods were based on a diazotization reaction of procaine HCl with sodium nitrite and hydrochloric acid to form diazonium salt, which is coupled with chromatropic acid in alkaline medium to form an intense pink water-soluble dye that is stable and has a maximum absorption at 508 nm. A graphs of absorbance versus concentration show that Beer’s law is obeyed over the concentration range of 1-40 and 5-400 µg.ml-1 of Procaine HCl, with detection limits of 0.874 and 3.75 µg.ml-1 of Procaine HCl for batch and FIA methods respectively. The FIA average sample throughput was 70 h-1. All different chemical and physical experimental parameters that affecting on the development and stability of the colored product were carefully studied and the proposed methods were applied satisfactorily for the determination of Procaine HCl in an injections samples using the standard addition method.

Author(s):  
Hind Hadi ◽  
Gufran Salim

A simple, rapid and sensitive spectrophotmetric method for trace determination of salbutamol (SAL) in aqueous solution and in pharmaceutical preparations is described. The method is based on the diazotization coupling reaction of the intended compound with 4-amino benzoic acid (ABA) in alkaline medium to form an intense orange, water soluble dye that is stable and shows maximum absorption at 410 nm. A graph of absorbance versus concentration indicates that Beer’s law is obeyed over the concentration range of 0.5-30 ppm, with a molar absorbtivity 3.76×104 L.mol-1 .cm-1 depending on the concentration of SAL. The optimum conditions and stability of the colored product have been investigated and the method was applied successfully to the determination of SAL in dosage forms.


2012 ◽  
Vol 9 (2) ◽  
pp. 302-310 ◽  
Author(s):  
Baghdad Science Journal

New, simple and sensitive batch and Flow-injecton spectrophotometric methods for the determination of Thymol in pure form and in mouth wash preparations have been proposed in this study. These methods were based on a diazotization and coupling reaction between Thymol and diazotized procaine HCl in alkaline medium to form an intense orange-red water-soluble dye that is stable and has a maximum absorption at 474 nm. A graphs of absorbance versus concentration show that Beer’s law is obeyed over the concentration range of 0.4-4.8 and 4-80 µg.ml-1 of Thymol, with detection limits of 0.072 and 1.807 µg.ml-1 of Thymol for batch and FIA methods respectively. The FIA procedure sample throughput was 80 h-1. All different chemical and physical experimental parameters that affecting on the development and stability of the colored product were carefully studied and the proposed methods were successfully applied to the determination of Thymol in mouth wash preparations.


Author(s):  
WASAN A AL-UZRI

Objective: A simple and sensitive spectrophotometric method has been presented for the determination of phenylephrine hydrochloride by coupling reaction with diazotized sulfacetamide sodium. Methods: The method is based on the diazotization reaction of sulfacetamide sodium with sodium nitrite in the presence of hydrochloric acid to form diazonium salt, which is coupled with the drug in alkaline medium to form azo dye, showing absorption maxima at 425 nm. Results: Calibration plot was linear over the concentration range of 2–24 μg/mL and detection limit of 0.278 μg/mL with a correlation coefficient of 0.9929. All different chemical and physical experimental parameters affecting on the development and stability of the colored product were carefully studied. Conclusions: The proposed method was successfully applied to the determination of phenylephrine in nasal drops with good precision and sensitivity.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Safwan M. Fraihat

AbstractGreen, sensitive and selective spectrophotometric methods were developed for the determination of nitrite in water samples. The methods (A, B and C) are based on the reduction of 5-nitroimidazoles; metronidazole (MTL), secnidazole (SCL) and tinidazole (TNL), respectively, followed by diazotization using nitrite in acidic medium, then coupling with pyrogallol (PG). The amount of nitrite was determined by measuring the absorbance of the colored product at 385 nm. The new methods were linear in the ranges of 2.5–30 μgml


2005 ◽  
Vol 88 (4) ◽  
pp. 1148-1154 ◽  
Author(s):  
Juan C Rodríguez ◽  
Julia Barciela ◽  
Sagrario García ◽  
Carlos Herrero ◽  
Rosa M Peña

Abstract Multivariate experimental design has been used to optimize 2 flow-injection spectrophotometric methods for the determination of indapamide in pharmaceutical dosage forms, both pure and commercial tablets. The methods are based on the oxidation of this drug with iron (III) in acidic medium and the subsequent formation of an intensive orange-red complex between the liberated iron (II) and 2,2′-bipyridyl or 1,10-phenanthroline reagents. Plackett-Burman designs were applied as a screening method to evaluate the most significant factors with few experiments. Central composite 23+ star designs were performed to evaluate the response surfaces. The methods have been fully validated and were applied successfully to the determination of indapamide in pure and pharmaceutical forms with good accuracy and precision. Therefore, the 2 proposed procedures are simple, inexpensive, and rapid flow methods for the routine determination of indapamide in pharmaceutical preparations.


2011 ◽  
Vol 17 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Zenita Devi ◽  
K. Basavaiah ◽  
K.B. Vinay

Three simple and sensitive spectrophotometric methods are described for the determination of domperidone (DOM) in bulk drug and in dosage forms using bromate-bromide mixture as brominating agent in acid medium and three dyes, meta-cresol purple (MCP), amaranth (AMR) and erioglaucine (EGC). The methods involve the addition of a known excess of bromate-bromide mixture to an acidified solution of DOM followed by the determination of the residual bromine by reacting with a fixed amount of either MCP dye and measuring the absorbance at 530 nm (method A) or AMR dye and measuring the absorbance at 520 nm (method B) or EGC dye and measuring the absorbance at 630 nm (method C). Beer?s law is obeyed over the concentration ranges, 0.63 - 10.0, 0.25-4.0 and 0.13-2.0 ?g mL-1 for method A, method B and method C, respectively. The apparent molar absorptivities are calculated to be 3.751 ? 104, 6.604 ? 104 and 1.987 ? 105 L mol-1cm-1 for method A, method B and method C, respectively and the corresponding sandell sensitivity values are 0.011, 0.006 and 0.002 ?g cm-2. The limit of detection and the limit of quantification are also reported for all the three methods. No interference was observed from common additives found in pharmaceutical preparations. Statistical comparisons of the results with those of the reference method showed an excellent agreement, and indicated no significant difference in accuracy and precision. The accuracy and reliability of the methods were further ascertained by performing recovery tests via standard-addition technique.


2020 ◽  
pp. 2172-2181
Author(s):  
Saad Hasani Sultan ◽  
Zainab Walid Majed

A simple, fast, and sensitive spectrophotometric method was suggested for the determination of Bromhexine Hydrochloride (BHH) in its pharmaceutical formulations. The method depends on the diazotization of BHH by sodium nitrite in acidic medium to produce the corresponding diazonium salt. The latter is coupled with phloroglucinol reagent in alkali medium to form a yellow water soluble azo-dye which has a maximum absorption at 405 nm with a molar absorptivity of 2.7×104 l.mol-1.cm-1 and Sandellʼs sensitivity of 0.01517 µg.cm-1. Beerʼs low is obeyed within a concentration range of 0.25-15 µg.mL-1 of BHH. The LOD and LOQ values of the proposed method were 0.087 µg.mL-1 and 0.293 µg.ml-1, respectively. The proposed method was validated with standard methods and successfully applied to the determination of Bromhexine in its pharmaceutical formulations as tablets, syrup, and injections.


2013 ◽  
Vol 19 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Hemavathi Deepakumari ◽  
Shiramahally Mallegowda ◽  
Kanakapura Vinay ◽  
Hosakere Revanasiddappa

Two simple, sensitive and extraction-free spectrophotometric methods are described for the estimation of risperidone (RSP) in both pure and in pharmaceutical preparations. The proposed methods are based on the formation of ion-pair complex between RSP and the dyes, bromophenol blue (BPB) in method A and Phenol red (PR) in method B at room temperature to form yellow colored products which show maximum absorbance at 410 and at 400 nm in methods A and B, respectively. Beer's law was obeyed in the concentration range of 0.5-10 and 0.5-25 ?g mL-1 in methods A and B with apparent molar absorptivities of 3.43 ? 104 and 0.85 ? 104 L moL-1 cm-1, respectively. The limit of detection for method A is found to be 0.0056 and for method B is 0.132 ?g mL-1. The composition of the ion-pairs was established by Job?s method and it was found to be 1:1 for both the methods A and B. The proposed methods have been applied successfully to the determination of RSP in pharmaceutical preparations. The results were statistically compared with those of a reference method by applying the Student?s t-test and F-test. The methods developed were validated for accuracy and precision by performing recovery experiments via standard addition technique.


Sign in / Sign up

Export Citation Format

Share Document