scholarly journals Conventional and Molecular Typing of Salmonella enterica serotype Typhi Locally Isolated In Baghdad

2012 ◽  
Vol 9 (4) ◽  
pp. 632-639
Author(s):  
Baghdad Science Journal

Phenotypic And genotypic characteristics of Salmonella enterica serotype Typhi have been determined for 29 isolates, from Baghdad in 2007. Conventional typing methods were performed by biochemical tests, and antimicrobial susceptibility test. Molecular typing performed by analysis plasmid DNA beside using the Random Amplified Polymorphic DNA (RAPD-PCR). For the latter, two universal primers that have selected for the high discriminatory power were used for RAPD analysis. All isolates were belong one biotype according to the differention by their ability to decarboxylat lysine, 29(100%) were lysine (+). All the isolates were susceptible to the Antibiotics used. However, all the strains free of plasmids. RAPD was capable of grouping the strains in 6 genotypic patterns using primer 784, in 4 genotypic patterns using primer 787. Conventional phenotypic typing methods, as well as the DNA plasmid analysis, presented non significant discriminatory power; however, RAPD-PCR analysis showed discriminatory power, reproducibility, easy interpretation and can be considered as a promising alternative typing method for S. Typhi.

2002 ◽  
Vol 44 (6) ◽  
pp. 315-319 ◽  
Author(s):  
Bianca R. QUINTAES ◽  
Nilma C. LEAL ◽  
Eliane M. F. REIS ◽  
Érica L. FONSECA ◽  
Ernesto HOFER

Phenotypic and genotypic characteristics of Salmonella Typhi were studied in 30 strains, isolated in different years, from some areas in Brazil. Conventional typing methods were performed by biochemical tests, Vi phage-typing scheme, and antimicrobial susceptibility test. Molecular typing methods were performed by analysis of plasmid DNA and by random amplified polymorphic DNA (RAPD-PCR). For the latter, an optimization step was performed to ensure the reproducibility of the process in genetic characterization of S. Typhi. The predominance of 76.7% of biotype I (xylose +, arabinose -) was noticed in all studied areas. Three phage types were recognized, with prominence for the phage types A (73.3%) and I+IV (23.3%). All the strains were susceptible to the drugs used. However, 36.7% of the strains contained plasmids, with predominance of the 105 Kb plasmid. RAPD was capable of grouping the strains in 8 genotypic patterns using primer 784, in 6, using primer 787 and in 7, using primer 797. Conventional phenotypic typing methods, as well as the DNA plasmid analysis, presented nonsignificant discriminatory power; however, RAPD-PCR analysis showed discriminatory power, reproducibility, easy interpretation and performance, being considered as a promising alternative typing method for S. Typhi.


2001 ◽  
Vol 67 (2) ◽  
pp. 895-903 ◽  
Author(s):  
Mavis Hendson ◽  
Alexander H. Purcell ◽  
Deqiao Chen ◽  
Chris Smart ◽  
Magalie Guilhabert ◽  
...  

ABSTRACT Strains of Xylella fastidiosa isolated from grape, almond, maple, and oleander were characterized by enterobacterial repetitive intergenic consensus sequence-, repetitive extragenic palindromic element (REP)-, and random amplified polymorphic DNA (RAPD)-PCR; contour-clamped homogeneous electric field (CHEF) gel electrophoresis; plasmid content; and sequencing of the 16S-23S rRNA spacer region. Combining methods gave greater resolution of strain groupings than any single method. Strains isolated from grape with Pierce's disease (PD) from California, Florida, and Georgia showed greater than previously reported genetic variability, including plasmid contents, but formed a cluster based on analysis of RAPD-PCR products,NotI and SpeI genomic DNA fingerprints, and 16S-23S rRNA spacer region sequence. Two groupings of almond leaf scorch (ALS) strains were distinguished by RAPD-PCR and CHEF gel electrophoresis, but some ALS isolates were clustered within the PD group. RAPD-PCR, CHEF gel electrophoresis, and 16S-23S rRNA sequence analysis produced the same groupings of strains, with RAPD-PCR resolving the greatest genetic differences. Oleander strains, phony peach disease (PP), and oak leaf scorch (OLS) strains were distinct from other strains. DNA profiles constructed by REP-PCR analysis were the same or very similar among all grape strains and most almond strains but different among some almond strains and all other strains tested. Eight of 12 ALS strains and 4 of 14 PD strains of X. fastidiosa isolated in California contained plasmids. All oleander strains carried the same-sized plasmid; all OLS strains carried the same-sized plasmid. A plum leaf scald strain contained three plasmids, two of which were the same sizes as those found in PP strains. These findings support a division of X. fastidiosaat the subspecies or pathovar level.


2009 ◽  
Vol 138 (1) ◽  
pp. 76-85 ◽  
Author(s):  
Á. HIDALGO ◽  
A. CARVAJAL ◽  
M. PRINGLE ◽  
P. RUBIO ◽  
C. FELLSTRÖM

SUMMARYThis research aimed to describe the genetic and phenotypic diversity of 74 SpanishBrachyspira hyodysenteriaefield isolates, to establish epidemiological relationships between the isolates and to confirm the presence of tiamulin-resistant isolates in Spain. For these purposes, we performed biochemical tests in combination with diagnostic PCR analysis for the identification ofBrachyspiraspp. and for detection of thesmpA/smpBgene. We also used antimicrobial susceptibility tests, random amplified polymorphic DNA (RAPD) and a new pulsed-field gel electrophoresis (PFGE) protocol. The combination of RAPD and PFGE allowed the study of epidemiological relationships. Both indole-negative and tiamulin-resistant isolates ofB. hyodysenteriaeare reported in Spain for the first time. The genetic analyses indicated a relationship between these Spanish isolates and indole-negative isolates previously obtained from Germany and Belgium.


1998 ◽  
Vol 64 (9) ◽  
pp. 3403-3410 ◽  
Author(s):  
Covadonga R. Arias ◽  
María Jesús Pujalte ◽  
Esperanza Garay ◽  
Rosa Aznar

ABSTRACT Genetic relationships among 132 strains of Vibrio vulnificus (clinical, environmental, and diseased-eel isolates from different geographic origins, as well as seawater and shellfish isolates from the western Mediterranean coast, including reference strains) were analyzed by random amplified polymorphic DNA (RAPD) PCR. Results were validated by ribotyping. For ribotyping, DNAs were digested with KpnI and hybridized with an oligonucleotide probe complementary to a highly conserved sequence in the 23S rRNA gene. Random amplification of DNA was performed with M13 and T3 universal primers. The comparison between ribotyping and RAPD PCR revealed an overall agreement regarding the high level of homogeneity of diseased-eel isolates in contrast to the genetic heterogeneity of Mediterranean isolates. The latter suggests the existence of autochthonous clones present in Mediterranean coastal waters. Both techniques have revealed a genetic proximity among Spanish fish farm isolates and a close relationship between four Spanish eel farm isolates and some Mediterranean isolates. Whereas the differentiation within diseased-eel isolates was only possible by ribotyping, RAPD PCR was able to differentiate phenotypically atypical isolates of V. vulnificus. On the basis of our results, RAPD PCR is proposed as a better technique than ribotyping for rapid typing in the routine analysis of new V. vulnificusisolates.


2008 ◽  
Vol 140 (5) ◽  
pp. 527-538 ◽  
Author(s):  
Patricia L. Johnson ◽  
Jane L. Hayes ◽  
John Rinehart ◽  
Walter S. Sheppard ◽  
Steven E. Smith

AbstractScolytus schevyrewi Semenov, the banded elm bark beetle, and S. multistriatus Marsham, the smaller European elm bark beetle, are morphologically similar. Reliance on adult external morphological characters for identification can be problematic because of wide within-species variability and the need for good-quality specimens. The inability to identify developmental stages can also hamper early-detection programs. Using two character identification systems, genitalic (aedeagus) morphology, and DNA markers (random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR)) to distinguish S. schevyrewi from S. multistriatus, we examined specimens from geographically distinct populations of both species collected from infested host trees or semiochemical-baited funnel traps. We found that aedeagus morphology can be used to identify the two species. The use of two oligonucleotide primers in the RAPD-PCR analysis yielded distinct DNA banding patterns for the two species. Species identification using RAPD-PCR analysis was validated by a blind test and used to make species identifications of larval specimens. These tools improve the ability to differentiate between S. schevyrewi and S. multistriatus at immature and adult stages, and could be developed and used for other scolytines as well.


Sign in / Sign up

Export Citation Format

Share Document