scholarly journals The Impact of Plane Heterogeneity on Steam Flooding Development in Heavy Oil Reservoirs

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yaguang Qu ◽  
YiPing Ye ◽  
Shichang Ju ◽  
Jiawen Liu ◽  
Meng Lei

Abstract Steam flooding is proven to be an effective method to improve the development effect of heavy oil reservoirs. And steam flooding is the most common oil recovery technology for heavy oil reservoirs in China. However, because of the various reservoir physical properties, bring great challenges to successful steam flooding development. According to the previous research and development practice, we know that reservoir heterogeneity has a great influence on the development effect of water flooding. Due to the heterogeneity of reservoirs, the development of different injection-production well patterns will be affected. However, it is uncertain whether reservoir heterogeneity has an impact on steam flooding development effect. In order to clarify the above scientific issues, we take Xinjiang steam flooding oilfield as the research object to carry out relevant research. According to the reservoir distribution characteristics of Xinjiang Oilfield, three conceptual heterogeneity models representing permeability, thickness, and geometric plane heterogeneity are firstly proposed. Then, mathematic models with different plane heterogeneity of reservoir sand were built. Based on the mathematic model, initial conditions, boundary condition, and geological parameters of conceptual models, different steam flooding patterns were studied by applying numerical calculation. It is found that heterogeneity is an important geological factor affecting the development of steam flooding of heavy oil reservoir. And the results showed that cumulative oil production was different of different flood pattern at the same production condition. It can be concluded that the development effect of steam flooding of heavy reservoirs is strongly influenced by flood pattern. In order to improve development effectiveness of steam flooding of heavy oil reservoirs, flood pattern should be optimized. For each type of plane heterogeneity reservoir, a reasonable flood pattern was proposed. For plane heterogeneity of permeability, thickness, and geometry form, under the conditions of that as the producer was deployed in high permeability, thick, wide sand body and injector was deployed in low permeability, thin, narrow sand body, the recovery of steam flooding in heavy oil reservoir was better. Finally, how the three types of plane heterogeneity influence steam flooding of heavy reservoirs was discussed by adopting a sensitivity analysis method. The results show that the influence of permeability heterogeneity is the largest, thickness heterogeneity is the second, and geometric heterogeneity is the least. This conclusion can help us improve the development of this reservoir. And also, the findings of this study can help for better understanding of properly deployed well pattern and how to effective develop the heavy oil reservoirs of strong plane heterogeneity for other heavy oil reservoirs.

Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. B13-B27 ◽  
Author(s):  
Hemin Yuan ◽  
De-Hua Han ◽  
Weimin Zhang

Heavy oil reservoirs are important alternative energy resources to conventional oil and gas reservoirs. However, due to the high viscosity, most production methods of heavy oil reservoirs involve thermal production. Heavy oil reservoirs’ properties change dramatically during thermal production because the viscosity drops drastically with increasing temperature. Moreover, the velocity and density also decrease after steam injection, leading to a longer traveltime of seismic velocities and low impedance of the steam chamber zone. These changes of properties can act as indicators of the steam chamber and can be detected through the time-lapse inversion method. We first establish the rock-physics relationship between oil sands’ impedance and temperature on the basis of our previous laboratory work. Then, we perform the forward modeling of the heavy oil reservoir with the steam chamber to demonstrate the influence of steam injection on seismic profiles. Then, we develop a modified-Cauchy prior-distribution-based time-lapse inversion method and perform a 2D model test. The inversion method is then applied on the real field data, and the results are analyzed. By combining the inverted impedance and rock-physics relation between impedance and temperature, the temperature distribution map is obtained, which can work as an indicator of steam chamber. Finally, an empirical relation between impedance and velocity is established, and velocity is derived from the impedance.


2011 ◽  
Vol 236-238 ◽  
pp. 825-828
Author(s):  
Chuan Min Xiao

According to the characters of conventional heavy oil reservoir, liquid and exploitation progress, displacement adjustment method was applied to reduce degression and enhance recovery. The experiment results showed the gel time could be controlled and the strength could be adjusted. The flooding oil rate was more 14.3% than water flooding in the lab. The pilot test showed that the test effect of moveable gel flooding was significantly good, the accumulated incremental oil production of 6 well groups is 54756t, input-output ratio is 1: 4.1, which shows satisfactory effects in improving the water flooding effect in this conventional heavy oil reservoirs.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xingmin Li ◽  
Changchun Chen ◽  
Zhangcong Liu ◽  
Yongbin Wu ◽  
Xiaoxing Shi

Nowadays, extra heavy oil reservoirs in the Orinoco Heavy-Oil-Belt in Venezuela are exploited via cold production process, which present different production performance in well productivity and primary recovery factor. The purpose of this study is to investigate the causes for such differences with the aspect of foamy oil mechanism. Two typical oil samples were adopted from a shallow reservoir in western Junìn region and a middepth reservoir in eastern Carabobo region in the Belt, respectively. A depletion test was conducted using 1D sand-pack with a visualized microscopic flow observation installation for each of the oil samples under simulated reservoir conditions. The production performance, the foamy oil behaviour, and the oil and gas morphology were recorded in real time during the tests. The results indicated that the shallow heavy oil reservoir in the Belt presents a weaker foamy oil phenomenon when compared with the middepth one; its foamy oil behaviour lasts a shorter duration with a smaller scope, with bigger bubble size and less bubble density. The difference in foamy oil behaviour for those two types of heavy oil reservoir is caused by the difference in reservoir pressure, solution GOR, asphaltene content, etc. Cold production presents obvious features of three stages under the action of strong foamy oil displacement mechanism for the middepth heavy oil reservoir, which could achieve a more favourable production performance. In the contrary, no such obvious production characteristics for the shallow heavy oil reservoir are observed due to weaker foamy oil behaviour, and its primary recovery factor is 9.38 percent point lower than which of the middle heavy oil reservoirs.


2011 ◽  
Vol 71-78 ◽  
pp. 2049-2054 ◽  
Author(s):  
Jin Li Zhu ◽  
Liang Liang Jiang ◽  
Li Cheng Liu ◽  
Yu Qiu Lin

Liaohe block J is a super heavy oil reservoir with relatively strong anisotropy and active edge-bottom water condition. After more than two decades of huff and puff production, the block now reaches a low production rate period, and the local part of the block also encounters serious edge-bottom water invasion. Now steam flooding is used as a switching method to invert the production decline tendency. Applied with thermal recovery process and numerical simulation method, reservoir pressure at flooding conversion, pressure control in steam flooding, injection-production parameters and well pattern are used to optimize the key techniques of steam flooding design. The design results are as follows: the reservoir pressure at flooding conversion as well as during steam flooding process should be controlled below 5 Mpa; the unit volume steam injection rate is 1.65t/d.hm2.m and the bottom-hole steam quality of injecter is no less than 53%; the injection-production ratio is 1.1:1 and inversed 9 point pattern with a 83m well space is used. The steam flooding pilot has been carried out for more than 2 years and obtains favorable benefits.


2013 ◽  
Vol 316-317 ◽  
pp. 834-837
Author(s):  
Zong Zhan Xue ◽  
Deng Fa He ◽  
Xiao Heng Wang

Now in situ combustion became one of the ways for the developed heavy oil reservoirs to convert development pattern and improve recovery. After long time steam huff and puff development in heavy oil reservoir, it was obvious that there was a big change on the oil zones and reservoir properties and the reservoir heterogeneity. When it was converted to in situ combustion, the injection gas often break through along the high permeability layers in the fire drive wells that make the sweep area smaller and decrease the reservoir recovery. By analysis on the gas channeling of in situ combustion occurred in the heavy oil reservoirs, the methods was put forward to develop heavy oil reservoir using in situ combustion reasonably including well space infilling, controlling the gas injection rate, adding roam surfactant agent and using fire drive with horizontal well assisted etc. to prevent the condition of gas channeling occurring. It will greatly improve the success and adaptability of the in situ combustion used in vertical wells of the heavy oil reservoir by using these methods. It also will build on basis of the heavy oil reservoir converted to in situ combustion development.


2014 ◽  
Vol 644-650 ◽  
pp. 871-874
Author(s):  
Zhen Dong Li

Based on the assisted gravity draining steam flooding and the development technology of drive drain compound, using computational fluid dynamics software ANYSY CFX to analyze the impact of the oil reservoir thickness、density of the crude oil 、oil viscosity and oil saturation on the seepage velocity difference. Research shows that: These factors have a significant impact on the flow velocity difference Research results provide reference for seepage study of gravity drive of heavy oil .


2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


Sign in / Sign up

Export Citation Format

Share Document