scholarly journals Kinematic interpretation and structural evolution of North Oman, Block 6, since the Late Cretaceous and implications for timing of hydrocarbon migration into Cretaceous reservoirs

GeoArabia ◽  
2006 ◽  
Vol 11 (1) ◽  
pp. 97-140 ◽  
Author(s):  
Jacek B. Filbrandt ◽  
Salah Al-Dhahab ◽  
Abdullah Al-Habsy ◽  
Kester Harris ◽  
John Keating ◽  
...  

ABSTRACT On the basis of structural style and differences in Late Cretaceous evolution, the carbonate platform in northern Oman and the allochthonous wedge comprising deepwater sediments and oceanic crust in the Oman Mountains form distinct structural domains. Imbrication associated with the emplacement of the Semail Ophiolite and predominantly SW-verging thrusting of the Arabian Platform margin culminated in the late early Campanian. The structural grain of NW-trending thrust faults and contractional folds contrasts markedly with the style and grain of the region immediately south of the Oman Mountains (our study area) and implies strong strain partitioning. Kinematic indicators from subsurface data, combined with the age of growth faulting, provide the basis for the interpretation that maximum horizontal stress was oriented NW-SE in this foreland region rather than NE-SW during the Campanian. The dominant tectonic control on the formation of faults is believed to have been an oblique “collision” of the Indian Continent with the Arabian Plate during the Santonian-Campanian. Deformation in this domain was dominated by distributed strike-slip and normal faulting. This period of faulting was significant for two reasons: (1) The faults both enhanced existing structures and formed new traps. They also allowed vertical migration of hydrocarbons from Palaeozoic reservoirs (e.g. Haushi clastic accumulations) into Shu’aiba and Natih carbonates above. Until that time, some 75 Ma ago, oil was retained in Late Palaeozoic and older traps. This period of deformation is a “Critical Event” within the context of Oman’s hydrocarbon distribution.(2) Faults with NNW and WNW orientations that developed at that time appear to be directly associated with important fracture systems that affect the productivity of several giant fields comprising Natih and Shu’aiba carbonate reservoirs (e.g. Lekhwair, Saih Rawl). Following this tectonic event, late Maastrichtian to Palaeocene uplift and erosion in excess of 1,000 m, is recorded by truncation of the Aruma Group and Natih Formation, as well as part of the Shu’aiba Formation below the base Cenozoic unconformity. Seismic velocity and porosity anomalies from Lekhwair field in the northwest to the Huqf-Haushi High in the southeast, provide additional support for the areal distribution of this event. Around the Lekhwair and Dhulaima fields, the circular to elliptical subcrop pattern below this unconformity does not support the notion of a peripheral bulge related to the emplacement of the allochthon. The stress field changed during the late Cenozoic with the opening of the Red Sea and Gulf of Aden, and the collision of the Arabian Plate with the Iranian Plate. NE-SW-oriented maximum horizontal stress during the late Cenozoic led to the formation of major folds resulting in, for example, the surface anticlines over the Natih and Fahud fields as well as causing inversion along the Maradi Fault Zone. This may also have led to the uplift of the Oman Mountains. The regional northerly subsidence caused by crustal loading of the Arabian Plate gently tilted traps during the Pliocene-Pleistocene from Lekhwair to Fahud.

10.1144/m54.5 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 67-103
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe tectonic evolution of the Oman Mountains as of the Neoproterozoic begins with a major extensional event, the Neoproterozoic Abu Mahara rifting. It was followed by the compressional Nabitah event, still during the Neoproterozoic, in Oman but possibly not in the study area. During the earliest Cambrian, the Jabal Akhdar area was affected by the Cadomian Orogeny, marked by NE--SW shortening. It is unclear, whether the Saih Hatat area was exposed to the Cadomian deformation, too. Still during the lower Cambrian, the Angudan Orogeny followed, characterized by NW--SE shortening. An episode of rifting affected the Saih Hatat area during the mid-Ordovician. During the mid-Carboniferous, both dome areas were deformed by tilting and large-scale open folding in the course of the ‘Hercynian’ event. As a consequence, a major unconformity formed. As another Late Paleozoic event, the Permian break-up of Pangaea and subsequent formation of the Hawasina ocean basin, are recorded in the Southeastern Oman Mountains. As a result, a passive margin formed which existed until the mid-Cretaceous, characterized by deposition of mostly shelfal carbonates. This interval of general tectonic quiescence was interrupted during the early Jurassic by uplift and tilting of the Arabian Platform. The platform collapsed during the late Cretaceous, related to the arrival of the obducted allochthonous nappes including the Semail Ophiolite, transforming the passive margin to an active margin.The Semail Ophiolite formed most likely above a subduction zone within the Neo-Tethys Ocean during the Cenomanian while parts of the Arabian Plate were subducted to the NE. Formation of oceanic lithosphere and SW-thrusting was broadly coeval, resulting in ophiolite obduction onto the Hawasina Basin. The Semail Ophiolite and the Hawasina rocks combined were thrust further onto the Arabian Plate. Their load created a foreland basin and forebulge within the Arabian Platform. Once the continental lithosphere of the Arabian Platform was forced into the subduction zone, a tear between the dense oceanic lithosphere and the buoyant continental lithosphere developed. This led to rapid uplift and exhumation of subducted continental lithosphere of the Saih Hatat area, while obduction was still going on, causing in multiple and intense folding/thrusting within the eastern Saih Hatat Dome. Exhumation of the Saih Hatat Dome was massive. The emplacement of the ophiolite was completed during the Campanian/Maastrichtian. For completeness, we also present alternative models for the developmental history of the Semail Ophiolite.Immediately after emplacement, the Arabian lithosphere underwent intense top-to-the-NE extensional shearing. Most of the Saih Hatat Dome was exhumed during the latest Cretaceous to Early Eocene, associated with major extensional shearing at its flanks. Further convergence during the late Eocene to Miocene resulted in exhumation of the Jabal Akhdar Dome and some gentle exhumation of the Saih Hatat Dome, shaping the present-day Southeastern Oman Mountains. In the coastal area, east and SE of the Saih Hatat Dome, some late Cretaceous to present-day uplift is evident by, e.g., uplifted marine terraces. The entire Oman Mountains are uplifting today, which is evident by the massive wadi incision into various rock units, including wadi deposits which may form overhangs.


GeoArabia ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. 387-402 ◽  
Author(s):  
M. Atef Noweir ◽  
Abdulrahman S. Alsharhan

ABSTRACT Detailed field mapping and structural studies in the Jebel Auha-Jebel Huwayyah area northeast of Al-Ain indicate that folding of neoautochthonous sedimentary rocks produced the north-northwest-trending Huwayyah Anticline. The anticline at the surface is composed of the Maastrichtian Qahlah and Simsima formations unconformably overlain by shallow-marine carbonate rocks that are correlated on faunal grounds with the Middle Eocene Dammam Formation. The investigation of the Huwayyah Anticline has identified three microfacies of bioclastic packstone, nummulitic packstone, and nummulitic packstone-grainstone in the local Dammam Formation. Diagenesis in the form of silicification, cementation, recrystallization, dissolution, compaction and neomorphism is widespread. The Huwayyah Anticline is a fault-propagation fold above a thrust ramp. The ramp developed from a pre-existing Late Cretaceous basal thrust within the Semail Ophiolite on the Oman Mountain Front. The anticline was formed as a result of regional compressive deformation due to rejuvenation of the Late Cretaceous thrust in post-Middle Eocene times. Westward-directed high-angle reverse faults of Jebel Auha trend parallel to the fold axis of the anticline. The Auha faults probably originated as west-dipping thrusts on the western flank of the anticline and were subsequently rotated to their present attitude as the flank of the anticline became steeper due to compression from the east.


2020 ◽  
Author(s):  
Sarah Mader ◽  
Joachim R. R. Ritter ◽  
Klaus Reicherter ◽  

Abstract. The region around the town Albstadt, SW Germany, was struck by four damaging earthquakes with magnitudes greater than five during the last century. Those earthquakes occurred along the Albstadt Shear Zone (ASZ) which is characterized by more or less continuous microseismicity. As there are no surface ruptures visible which may be connected to the fault zone, its characteristics can only be studied by its seismicity. We use the earthquake data of the state earthquake service of Baden-Württemberg from 2011 to 2018 and complement it with additional phase picks beginning 2016 at the AlpArray and StressTransfer seismic networks in the vicinity of the ASZ. This extended dataset is used to determine new minimum 1-D seismic vp and vs velocity models and corresponding station delay times for earthquake relocation. Fault plane solutions are determined for selected events and the direction of the maximum horizontal stress is derived. The minimum 1-D seismic velocity models have a simple and stable layering with increasing velocity with depth in the upper crust. The corresponding station delay times can be well explained by the lateral depth variation of the crystalline basement. The relocated events align north-south with most of the seismic activity between the towns of Tübingen and Albstadt east of the 9° E meridian. The events can be separated into several subclusters which indicate a segmentation of the ASZ. The majority of the 36 determined fault plane solutions features a NNE-SSW strike, but also NNW-SSE striking fault planes are observed. The main fault plane associated with the ASZ is dipping steeply and the rake indicates mainly sinistral strike-slip, but we also find minor components of normal and reverse faulting. The determined direction of the maximum horizontal stress of 147° is in good agreement with prior studies. This result indicates that the stress field in the area of the ASZ is mainly generated by the regional plate driving forces as well as the Alpine topography.


2011 ◽  
Vol 148 (5-6) ◽  
pp. 911-924 ◽  
Author(s):  
MARK B. ALLEN ◽  
MORTEZA TALEBIAN

AbstractStructure varies along strike in the Zagros fold-and-thrust belt of Iran, which is a principal element in the Arabia–Eurasia continental collision. Pre-collision, Late Cretaceous ophiolite nappes (Kermanshah, Neyriz) and related nappes of deep marine sediments (Radiolarite Series) were emplaced next to two regions (Pusht-e Kuh arc, Fars) which later developed a consistent structural style across the range from the High Zagros Fault to the foreland limit of deformation. The intervening area has a zone of highly imbricated Arabian plate strata (the Bakhtyari Culmination) thrust southwest towards and over a low relief, low elevation region (the Dezful Embayment). There are no ophiolite nappes northeast of the Bakhtyari Culmination. Isopachs reflect these different structural patterns from Late Cretaceous time but not earlier. In Late Cretaceous time the Dezful Embayment recorded less deposition than adjacent areas to the northwest and southeast. In the Palaeogene there was little net difference between the Dezful Embayment and its margins. The Dezful Embayment has been a depocentre since roughly 35 Ma, which is the likely time of initial collision between Arabia and Eurasia. We propose that the syn-collision structure and stratigraphy of the Zagros is therefore strongly influenced by the variation in Late Cretaceous ophiolite emplacement, but the original cause of this variation is not clear.


GeoArabia ◽  
2007 ◽  
Vol 12 (2) ◽  
pp. 99-130 ◽  
Author(s):  
Michael P. Searle

ABSTRACT The Al Jabal al Akhdar and Saih Hatat culminations in the central Oman Mountains expose the complete mid-Permian to Late Cretaceous (Cenomanian) passive shelf and margin carbonate sequence beneath the allochtonous slope (Sumeini Group), basin (Hawasina complex), distal ocean-trench (Haybi complex) facies rocks, and the Semail ophiolite thrust sheets that were emplaced from NE to SW during the Late Cretaceous. Reconstruction of the pre-thrust sequences shows that time-equivalent rocks occur in successively stacked thrust sheets from shelf to slope to basin. The Al Jabal al Akhdar structure is a 60 km wavelength anticline plunging to the northwest beneath the Hawasina Window and with a fold axis that curves from WNW-ESE (Jabal Shams) to NNE-SSW (Jabal Nakhl). The structure shows little internal deformation except for minor intra-formational thrust duplexing within the Cretaceous shelf stratigraphy along the northern margin. The upper structural boundaries around the flanks of the shelf carbonate culminations have been re-activated as late stage normal faults. The Semail thrust formed a passive roof fault during late-stage culmination of al Al Jabal al Akhdar such that the ophiolite rests directly on Wasia Formation top-shelf with the entire Sumeini, Hawasina and Haybi thrust sheets displaced around the margins. NE-directed backthrusting and intense folding in the northern part of the Hawasina Window affects all allochtonous units and is related to a steep ramp in the Late Cretaceous shelf margin at depth. The Saih Hatat culmination is another 40 km half-wavelength anticline in the central Oman Mountains, but shows extreme deformation in the form of recumbent folds, sheath folds with NNE-trending axes and thrusting along the northern margin. High-pressure carpholite, blueschist and eclogite facies rocks are exposed at successively deeper structural levels, separated by high-strain normal sense shear zones. There is no evidence for a separate ‘North Muscat microplate’ or an intra-continental subduction zone, as previously proposed; all high-pressure units can be restored to show their pre-deformation palaeographic positions along the northern margin of the Arabian Plate. Both Al Jabal al Akhdar and Saih Hatat are Late Cretaceous culminations, folded after obduction of the Hawasina, Haybi and Semail ophiolite thrust sheets from northeast to southwest during the period Turonian to Campanian-Lower Maastrichtian. Maximum compressive stress along the central Oman Mountains was oriented NE-SW, parallel to the ophiolite emplacement direction, but a second compressive stress axis was oriented WNW-ESE, either concurrently or slightly later in time, resulting in a dome and basin structural geometry. The biaxial fracture pattern in the foreland, southwest of the Oman Mountains could be explained as a result of the WNW-directed emplacement of the Masirah ophiolite belt and Batain mélange during the Campanian-early Palaeocene. Both Al Jabal al Akhdar and Saih Hatat were positive topographic features at the end of the Cretaceous with Upper Maastrichtian and Palaeogene sediments onlapping both flanks. In Jabal Abiad, these Palaeogene sediments have been uplifted by at least 2 km since the Late Miocene-Early Oligocene associated with minor NNE-SSW compression. Tertiary shortening, folding and thrusting increases to the north in the Musandam peninsula where the first effects of the Arabian Plate-Eurasian Plate (Zagros belt) continent-continent collision are seen.


GeoArabia ◽  
2009 ◽  
Vol 14 (1) ◽  
pp. 115-142 ◽  
Author(s):  
Michael P. Searle ◽  
Mohammed Y. Ali

ABSTRACT Four main Late Cretaceous and Tertiary phases of crustal shortening and thrust-related deformation are recognised in the northern Oman Mountains, each phase ending with a regional unconformity throughout the Oman Mountains and the UAE foreland. The earliest is the major thrust emplacement of the Semail Ophiolite, and underlying Haybi, Hawasina and Sumeini duplexes from NE to SW onto the depressed northeastern continental margin of the Arabian Plate during the Cenomanian to Campanian-early Maastrichtian (D1). A prominent widespread unconformity that places Maastrichtian Qahlah Formation laterite, sandstones and conglomerates and Simsima Formation rudist - Acteonellid gastropod limestones over all underlying allochthonous units is recognised throughout the Oman Mountains. SW-verging folds and thrusts in Triassic to Cretaceous carbonate slope facies rocks exposed in Jabal Sumeini (Sumeini Group and Hamrat Duru Group) have been emplaced over uppermost Cretaceous Juweiza Formation conglomerates at the highest level of the Aruma foreland basin. These Sumeini D1 structures are abruptly truncated by an unconformity, above which are Middle Maastrichtian beds showing up to 95% ‘death assemblage’ rudists and gastropods just below the Cretaceous – Tertiary boundary (top of Simsima Formation). A second deformation event (D2) affected the Simsima Formation and underlying Sumeini Group, Hamrat Duru complex and Semail Ophiolite rocks. This phase shows gentle folding about NW-SE fold axes (e.g. Jabal Rawdah), along a similar trend to the Late Cretaceous D1 event. This trend is also parallel to a regional set of NW-SE aligned fractures in the UAE foreland. A major angular unconformity occurs beneath the Upper Palaeocene – Eocene shallow-marine limestones (Umm Er Radhuma, Rus and Dammam formations). Many foreland jabals in eastern Abu Dhabi (Jabals Qatar, Malaqet, Mundasa) show gentle post-Eocene folding formed during the third stage of crustal shortening (D3). The large pericline of Jabal Hafit is a double-plunging, east-verging box fold that formed after deposition of the Oligocene Asmari Formation limestones and Miocene Fars Formation gypsum and clays, the youngest beds affected by the fold. This Late Miocene – Pliocene phase of crustal shortening (D4) is the youngest phase of deformation in the eastern Al Ain-Buraimi region.


1984 ◽  
Vol 121 (6) ◽  
pp. 577-587 ◽  
Author(s):  
P. E. R. Lovelock

AbstractThe structure of the northern part of the Arabian platform is reviewed in the light of hitherto unpublished exploration data and the presently accepted kinematic model of plate motion in the region. The Palmyra and Sinjar zones share a common history of development involving two stages of rifting, one in the Triassic–Jurassic and the other during late Cretaceous to early Tertiary times. Deformation of the Palmyra zone during the Mio-Pliocene is attributed to north–south compression on the eastern block of the Dead Sea transcurrent system which occurred after continental collision in the north in southeast Turkey. The asymmetry of the Palmyra zone is believed to result from northward underthrusting along the southern boundary facilitated by the presence of shallow Triassic evaporites. An important NW-SE cross-plate shear zone has been identified, which can be traced for 600 km and which controls the course of the River Euphrates over long distances in Syria and Iraq. Transcurrent motion along this zone resulted in the formation of narrow grabens during the late Cretaceous which were compressed during the Mio-Pliocene. To a large extent, present day structures in the region result from compressional reactivation of old lineaments within the Arabian plate by the transcurrent motion of the Dead Sea fault zone and subsequent continental collision.


2012 ◽  
Vol 183 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Ugur Kagan Tekin ◽  
M. Cemal Göncüoglu ◽  
Seda Uzuncimen

Abstract The Bornova Flysch Zone (BFZ) in NW Anatolia comprises several olistoliths or tectonic slivers, representing various parts of the Izmir-Ankara ocean. Radiolarian assemblages extracted from one of the olistoliths of the BFZ, cropping out along the Sögütlü section, to the NE Manisa city, were studied in detail. The lowermost part of the section contains latest Bajocian – early Callovian radiolarian taxa, followed by radiolarian assemblages indicating Late Jurassic to early Late Cretaceous (Cenomanian) ages. Previous studies reveal that the Izmir-Ankara oceanic basin was initially opened during late Ladinian – early Carnian. The new radiolarian data obtained from this olistolith reveals that relatively condensed, and possibly more or less continuous, pelagic sedimentation took place during the late Middle Jurassic to early Late Cretaceous in a non-volcanic oceanic basin closer to the Tauride-Anatolide platform margin.


Sign in / Sign up

Export Citation Format

Share Document