Effect of Flow Time Duration on Buildup Pattern for Reservoirs With Heterogeneous Properties

1984 ◽  
Vol 24 (03) ◽  
pp. 294-306 ◽  
Author(s):  
Tatiana D. Streltsova ◽  
Richard M. McKinley

Abstract For a heterogeneous reservoir, the shape of a buildup curve is strongly dependent on the length of the preceding flow period. Therefore, in exploration well testing, where the flow period is usually short, modification of the pressure buildup pattern caused by insufficient flow time can lead to erroneous interpretation of well behavior. Buildup pattern, as a function of flow time, is discussed here for various types of pattern, as a function of flow time, is discussed here for various types of ideal heterogeneities such as linear reservoir discontinuities, natural fractures, vertical stratification, pressure support, and lateral permeability loss. A relationship is provided for the dimensionless flow permeability loss. A relationship is provided for the dimensionless flow time required to produce a certain buildup pattern. The effect of flow time on quantitative assessment of reservoir parameters is determined aswell. Introduction Well test analysis traditionally has been based on techniques developed for either drawdown calculations or buildup calculations after long flow periods. In exploration well testing, however, flow times prior to buildup periods. In exploration well testing, however, flow times prior to buildup tests are usually short. For a well in a reservoir with homogeneous properties and of infinite extent, the shape of neither the drawdown curve properties and of infinite extent, the shape of neither the drawdown curve nor the ensuing buildup curve is affected by flow time duration. Both are straight lines of a certain slope on a semilog plot of pressure vs. time. However, this is not the case for a reservoir with heterogeneous properties. For a heterogeneous reservoir in which a well shows a drawdown properties. For a heterogeneous reservoir in which a well shows a drawdown curve with multiple slopes on a semilog plot as production progresses, the drawdown as well as the buildup patterns become essentially dependent or the producing time. Moreover, for a given flow time, the drawdown curve and the following buildup curve may have different shapes. In well test analyses where the shape of pressure curves is used to evaluate reservoir properties, recognition of the pressure pattern alterations caused by properties, recognition of the pressure pattern alterations caused by insufficient flow time becomes important. In the case of a linear discontinuity such as a sealing fault, for example, it has been found that the buildup data on a Homer plot would show the second, double-slope straight-line characteristic of the fault only if the radius of investigation, before the well is shut in exceeds at least four times the distance, to the fault, = . Even this criterion is optimistic from a practical point of view. All buildup data exhibiting this characteristic double slope will be at relatively long shut-in times for which the Homer time ratio ( + ) is less than1.5. Since actual data seldom extend into this range, longer flow time swill be necessary. In what follows, the modification of buildup pattern caused by insufficient flow time is considered along with the specification of both the flow time and buildup time necessary to recognize a heterogeneity from its characteristic buildup pattern . The heterogeneities considered aresingle no-flow and constant pressure boundaries,single boundary with permeability and storage contrasts,multiple boundaries,radial loss in permeability,vertical stratification, andnatural fractures. Reservoir Limited by One or More Boundaries Linear No-Flow Boundary. Drawdown at a well producing a reservoir limited by an impermeable barrier, such as a sealing fault, according to the method of images that duplicates such a boundary mathematically, is and ............................(1) where ( ) is the exponential integral function, is the distance from the well to the fault, and = is the dimensionless flow lime. The characteristic drawdown pattern for a well near a sealing boundary, described by Eq. 1 and illustrated by the insert in Fig. 1, depicts on a semilog plot a curve consisting of two straight lines joined by a smooth transition. The first straight line represents the well response before the fault exerts any influence. The slope of this straightline, is inversely proportional to the reservoir transmissibility. This line is referred to as the middle-time region (MTR) line. The second straight line, formed after a smooth transitional period, represents the well behavior as affected by the fault. Its slope is twice that of the first straight line. The intersection of the two straight lines occurs at a nondimensional time ............................(2) The transition region between these two straight lines lasts, however, for more than one log cycle. The slope of the drawdown curve, ............................(3) SPEJ p. 294

1972 ◽  
Author(s):  
Alain C. Gringarten ◽  
Henry J. Ramey ◽  
R. Raghavan

INTRODUCTION During the last few years, there has been an explosion of information in the field of well test analysis. Because of increased physical understanding of transient fluid flow, the entire pressure history of a well test can be analyzed, not just long-time data as in conventional analysis.! It is now often possible to specify the time of beginning of the correct semilog straight line and determine whether the correct straight line has been properly identified. It is also possible to identify wellbore storage effects and the nature of wellbore stimulation as to permeability improvement, or fracturing, and perform quantitative analyses of these effects. These benefits were brought about in the main by attempts to understand the short-time pressure data from well testing, data which were often classified as too complex for analysis. One recent study of short-time pressure behavior2 showed that it was important to specify the physical nature of the stimulation in consideration of stimulated well behavior. That is, statement of the van Everdingen-Hurst infinitesimal skin effect as negative was not sufficient to define short-time well behavior. For instance, acidized {but not acid fraced) and hydraulically fractured wells did not necessarily have the same behavior at early times, even though they might possess the same value of negative skin effect.


1974 ◽  
Vol 14 (01) ◽  
pp. 55-62 ◽  
Author(s):  
Hossein Kazemi

Abstract Two simple and equivalent procedures are suggested for improving the calculated average reservoir pressure from pressure buildup tests of liquid or gas wells in developed reservoirs. These procedures are particularly useful in gas well test procedures are particularly useful in gas well test analysis, irrespective of gas composition, in reservoirs with pressure-dependent permeability and porosity, and in oil reservoirs where substantial gas porosity, and in oil reservoirs where substantial gas saturation has been developed. A knowledge of the long-term production history is definitely helpful in providing proper insight in the reservoir engineering providing proper insight in the reservoir engineering aspects of a reservoir, but such long-term production histories need not be known in applying the suggested procedures to pressure buildup analysis. Introduction For analyzing pressure buildup data with constant flow rate before shut-in, there are two plotting procedures that are used the most: the procedures that are used the most: the Miller-Dyes-Hutchinson (MDH) plot and the Horner plot. The MDH plot is a plot of p vs log Deltat, whereas the Horner plot is a plot of p vs log [(t + Deltat)/Deltat]. Deltat is the shut-in time and t is a pseudoproduction time equal to the ratio of total produced fluid to last stabilized flow rate before shut-in. This method was first used by Theis in the water industry. Miller-Dyes-Hutchinson presented a method for calculating the average reservoir pressure, T, in in 1950. This method requires pseudosteady state before shut-in and was at first restricted to a circular reservoir with a centrally located well. Pitzer extended the method to include other Pitzer extended the method to include other geometries. Much later, Dietz developed a simpler interpretation scheme using the same MDH plot: p is read on the extrapolated straight-line section of the pressure buildup curve at shut-in time, Deltat,(1) where C is the shape factor for the particular drainage area geometry and the well location; values for C are tabulated in Refs. 5 and 13. For a circular drainage area with a centrally located well, C = 31.6, and for a square, C = 30.9.Horner presented another approach, which depended on the knowledge of the initial reservoir pressure, pi. This method also was first developed pressure, pi. This method also was first developed for a centrally located well in a circular reservoir.Matthews-Brons-Hazebroek (MBH) introduced another average reservoir pressure determination technique, which has been used more often than other methods: first a Horner plot is made; then the proper straight-line section of the buildup curve is proper straight-line section of the buildup curve is extrapolated to [(t + Deltat)/Deltat] = 1 (this intercept is denoted p*); finally, p is calculated from(2) m is the absolute value of the slope of the straightline section of the Horner plot:(3) pDMBH (tDA) is the MBH dimensionless pressure pDMBH (tDA) is the MBH dimensionless pressure at tDA, and tDA is the dimensionless time:(4) tp k a pseudoproduction time in hours:(5) PDMBH tDA) for different geometries and different PDMBH tDA) for different geometries and different well locations are given in Refs. 6 and 13.The second term on the right-hand side of Eq. 2 is a correction term for finite reservoirs that is based on material balance. Thus, for an infinite reservoir, p = pi = p*, where pi is the initial reservoir pressure. SPEJ P. 55


1979 ◽  
Vol 7 (1) ◽  
pp. 31-39
Author(s):  
G. S. Ludwig ◽  
F. C. Brenner

Abstract An automatic tread gaging machine has been developed. It consists of three component systems: (1) a laser gaging head, (2) a tire handling device, and (3) a computer that controls the movement of the tire handling machine, processes the data, and computes the least-squares straight line from which a wear rate may be estimated. Experimental tests show that the machine has good repeatability. In comparisons with measurements obtained by a hand gage, the automatic machine gives smaller average groove depths. The difference before and after a period of wear for both methods of measurement are the same. Wear rates estimated from the slopes of straight lines fitted to both sets of data are not significantly different.


2021 ◽  
Author(s):  
Gabriela Chaves ◽  
Danielle Monteiro ◽  
Virgilio José Martins Ferreira

Abstract Commingle production nodes are standard practice in the industry to combine multiple segments into one. This practice is adopted at the subsurface or surface to reduce costs, elements (e.g. pipes), and space. However, it leads to one problem: determine the rates of the single elements. This problem is recurrently solved in the platform scenario using the back allocation approach, where the total platform flowrate is used to obtain the individual wells’ flowrates. The wells’ flowrates are crucial to monitor, manage and make operational decisions in order to optimize field production. This work combined outflow (well and flowline) simulation, reservoir inflow, algorithms, and an optimization problem to calculate the wells’ flowrates and give a status about the current well state. Wells stated as unsuited indicates either the input data, the well model, or the well is behaving not as expected. The well status is valuable operational information that can be interpreted, for instance, to indicate the need for a new well testing, or as reliability rate for simulations run. The well flowrates are calculated considering three scenarios the probable, minimum and maximum. Real-time data is used as input data and production well test is used to tune and update well model and parameters routinely. The methodology was applied using a representative offshore oil field with 14 producing wells for two-years production time. The back allocation methodology showed robustness in all cases, labeling the wells properly, calculating the flowrates, and honoring the platform flowrate.


2021 ◽  
Author(s):  
Nagaraju Reddicharla ◽  
Subba Ramarao Rachapudi ◽  
Indra Utama ◽  
Furqan Ahmed Khan ◽  
Prabhker Reddy Vanam ◽  
...  

Abstract Well testing is one of the vital process as part of reservoir performance monitoring. As field matures with increase in number of well stock, testing becomes tedious job in terms of resources (MPFM and test separators) and this affect the production quota delivery. In addition, the test data validation and approval follow a business process that needs up to 10 days before to accept or reject the well tests. The volume of well tests conducted were almost 10,000 and out of them around 10 To 15 % of tests were rejected statistically per year. The objective of the paper is to develop a methodology to reduce well test rejections and timely raising the flag for operator intervention to recommence the well test. This case study was applied in a mature field, which is producing for 40 years that has good volume of historical well test data is available. This paper discusses the development of a data driven Well test data analyzer and Optimizer supported by artificial intelligence (AI) for wells being tested using MPFM in two staged approach. The motivating idea is to ingest historical, real-time data, well model performance curve and prescribe the quality of the well test data to provide flag to operator on real time. The ML prediction results helps testing operations and can reduce the test acceptance turnaround timing drastically from 10 days to hours. In Second layer, an unsupervised model with historical data is helping to identify the parameters that affecting for rejection of the well test example duration of testing, choke size, GOR etc. The outcome from the modeling will be incorporated in updating the well test procedure and testing Philosophy. This approach is being under evaluation stage in one of the asset in ADNOC Onshore. The results are expected to be reducing the well test rejection by at least 5 % that further optimize the resources required and improve the back allocation process. Furthermore, real time flagging of the test Quality will help in reduction of validation cycle from 10 days hours to improve the well testing cycle process. This methodology improves integrated reservoir management compliance of well testing requirements in asset where resources are limited. This methodology is envisioned to be integrated with full field digital oil field Implementation. This is a novel approach to apply machine learning and artificial intelligence application to well testing. It maximizes the utilization of real-time data for creating advisory system that improve test data quality monitoring and timely decision-making to reduce the well test rejection.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Dai ◽  
Naohiko Hanajima ◽  
Toshiharu Kazama ◽  
Akihiko Takashima

The improved path-generating regulator (PGR) is proposed to path track the circle/arc passage for two-wheeled robots. The PGR, which is a control method for robots so as to orient its heading toward the tangential direction of one of the curves belonging to the family of path functions, is applied to navigation problem originally. Driving environments for robots are usually roads, streets, paths, passages, and ridges. These tracks can be seen as they consist of straight lines and arcs. In the case of small interval, arc can be regarded as straight line approximately; therefore we extended the PGR to drive the robot move along circle/arc passage based on the theory that PGR to track the straight passage. In addition, the adjustable look-ahead method is proposed to improve the robot trajectory convergence property to the target circle/arc. The effectiveness is proved through MATLAB simulations on both the comparisons with the PGR and the improved PGR with adjustable look-ahead method. The results of numerical simulations show that the adjustable look-ahead method has better convergence property and stronger capacity of resisting disturbance.


2020 ◽  
Author(s):  
Issatay Dosmukhambetov ◽  
Bakhytzhan Taubayev ◽  
Ualikhan Yesbolov ◽  
Aikhan Sadykov ◽  
Muratbek Shmalin ◽  
...  

2021 ◽  
Vol 134 (3) ◽  
pp. 35-38
Author(s):  
A. M. Svalov ◽  

Horner’s traditional method of processing well test data can be improved by a special transformation of the pressure curves, which reduces the time the converted curves reach the asymptotic regimes necessary for processing these data. In this case, to take into account the action of the «skin factor» and the effect of the wellbore, it is necessary to use a more complete asymptotic expansion of the exact solution of the conductivity equation at large values of time. At the same time, this method does not allow to completely eliminate the influence of the wellbore, since the used asymptotic expansion of the solution for small values of time is limited by the existence of a singular point, in the vicinity of which the asymptotic expansion ceases to be valid. To solve this problem, a new method of processing well test data is proposed, which allows completely eliminating the influence of the wellbore. The method is based on the introduction of a modified inflow function to the well, which includes a component of the boundary condition corresponding to the influence of the wellbore.


2001 ◽  
Author(s):  
E.A. Mus ◽  
E.D. Toskey ◽  
S.J.F. Bascoul ◽  
R.J. Norris

Sign in / Sign up

Export Citation Format

Share Document