Analytical Upgridding Method To Preserve Dynamic Flow Behavior

2010 ◽  
Vol 13 (03) ◽  
pp. 473-484 ◽  
Author(s):  
Seyyed Abolfazl Hosseini ◽  
Mohan Kelkar

Summary A geocellular model contains millions of gridblocks and needs to be upscaled before the model can be used as an input for flow simulation. Available techniques for upgridding vary from simple methods such as proportional fractioning to more complicated methods such as maintaining heterogeneities through variance calculations. All these methods are independent of the flow process for which simulation is going to be used, and are independent of well configuration. We propose a new upgridding method that preserves the pressure profile at the upscaled level. It is well established that the more complex the flow process, the more detailed the level of heterogeneity needed in the simulation model. In general, ideal upscaling is the process that preserves the "pressure profile" from the fine-scale model under the applicable flow process. In our method, we upgrid the geological model using simple flow equations in porous media. However, it should be remembered that to obtain a better match between fine scale and coarse scale, we also need to use appropriate upscaling of the reservoir properties. The new method is currently developed for single-phase flow; however, we used it for both single-phase and two-phase flows for 2D and 3D cases. The method differs fundamentally from the other methods that try to preserve heterogeneities. In those methods, gridblocks are combined that have similar velocities (or other properties) by assuming constant pressure drop across the blocks. Instead, we combine the gridblocks that have similar pressure profiles, although to release some of our assumptions such as having constant velocities in gridblocks, we balance our equation with the K2 term. The procedure is analytical and, hence, very efficient, but preserves the pressure profile in the reservoir. The gridblocks (or layers) are combined in a way so that the difference between fine- and coarse-scale pressure profiles is minimized. In addition, we also propose two new criteria that allow us to choose the optimum number of layers more accurately so that a critical level of heterogeneity is preserved. These criteria provide insight into the overall level of heterogeneity in the reservoir and the effectiveness of the layering design. We compare the results of our method with proportional layering and the King et al. method (King et al. 2006) and show that, for the same number of layers, the proposed method captures the results of the fine-scale model better. We show that the layer merging not only depends on the variation in the permeability between the gridblocks (K2 term), but also on the relative magnitude of the permeability values by combining 1/K2 and K2 terms.

2021 ◽  
Author(s):  
Hasan Al-Ibadi ◽  
Karl Stephen ◽  
Eric Mackay

Abstract We introduce a pseudoisation method to upscale polymer flooding in order to capture the flow behaviour of fine scale models. This method is also designed to improve the predictability of pressure profiles during this process. This method controls the numerical dispersion of coarse grid models so that we are able to reproduce the flow behaviour of the fine scale model. To upscale polymer flooding, three levels of analysis are required such that we need to honour (a) the fractional flow solution, (b) the water and oil mobility and (c) appropriate upscaling of single phase flow. The outcome from this analysis is that a single pseudo relative permeability set that honours the modification that polymer applies to water viscosity modification without explicitly changing it. The shape of relative permeability can be chosen to honour the fractional flow solution of the fine scale using the analytical solution. This can result in a monotonic pseudo relative permeability set and we call it the Fractional-Flow method. To capture the pressure profile as well, individual relative permeability curves must be chosen appropriately for each phase to ensure the correct total mobility. For polymer flooding, changes to the water relative permeability included the changes to water viscosity implicitly thus avoiding the need for inclusion of a polymer solute. We call this type of upscaling as Fractional-Flow-Mobility control method. Numerical solution of the upscaled models, obtained using this method, were validated against fine scale models for 1D homogenous model and as well as 3D models with randomly distributed permeability for various geological realisations. The recovery factor and water cut matched the fine scale model very well. The pressure profile was reasonably predictable using the Fractional-Flow-Mobility control method. Both Fractional-Flow and Fractional-flow-Mobility control methods can be calculated in advance without running a fine scale model where the analysis is based on analytical solution even though produced a non-monotonic pseudo relative permeability curve. It simplified the polymer model so that it is much easier and faster to simulate. It offers the opportunity to quickly predict oil and water phase behaviour.


SPE Journal ◽  
2006 ◽  
Vol 11 (03) ◽  
pp. 304-316 ◽  
Author(s):  
Arild Lohne ◽  
George A. Virnovsky ◽  
Louis J. Durlofsky

Summary In the coarse-scale simulation of heterogeneous reservoirs, effective or upscaled flow functions (e.g., oil and water relative permeability and capillary pressure) can be used to represent heterogeneities at subgrid scales. The effective relative permeability is typically upscaled along with absolute permeability from a geocellular model. However, if no subgeocellular-scale information is included, the potentially important effects of smaller-scale heterogeneities (on the centimeter to meter scale) in both capillarity and absolute permeability will not be captured by this approach. In this paper, we present a two-stage upscaling procedure for two-phase flow. In the first stage, we upscale from the core (fine) scale to the geocellular (intermediate) scale, while in the second stage we upscale from the geocellular scale to the simulation (coarse) scale. The computational procedure includes numerical solution of the finite-difference equations describing steady-state flow over the local region to be upscaled, using either constant pressure or periodic boundary conditions. In contrast to most of the earlier investigations in this area, we first apply an iterative rate-dependent upscaling (iteration ensures that the properties are computed at the appropriate pressure gradient) rather than assume viscous or capillary dominance and, second, assess the accuracy of the two-stage upscaling procedure through comparison of flow results for the coarsened models against those of the finest-scale model. The two-stage method is applied to synthetic 2D reservoir models with strong variation in capillarity on the fine scale. Accurate reproduction of the fine-grid solutions (simulated on 500'500 grids) is achieved on coarse grids of 10'10 for different flow scenarios. It is shown that, although capillary forces are important on the fine scale, the assumption of capillary dominance in the first stage of upscaling is not always appropriate, and that the computation of rate-dependent effective properties in the upscaling can significantly improve the accuracy of the coarse-scale model. The assumption of viscous dominance in the second upscaling stage is found to be appropriate in all of the cases considered. Introduction Because of computational costs, field-simulation models may have very coarse cells with sizes up to 100 to 200 m in horizontal directions. The cells are typically populated with effective properties (porosity, absolute permeability, relative permeabilities, and capillary pressure) upscaled from a geocellular (or geostatistical) model. In this way, the effects of heterogeneity on the geocellular scale will be included in the large-scale flow calculations. The cell sizes in geocellular models may be on the order of 20 to 50 m in horizontal directions. However, heterogeneities on much smaller scales (cm- to m- scale) may have a significant influence on the reservoir flow (Coll et al. 2001; Honarpour et al. 1994), and this potential effect cannot be captured if the upscaling starts at the geocellular scale.


2011 ◽  
Vol 8 (3) ◽  
pp. 6031-6067
Author(s):  
H. Vernieuwe ◽  
B. De Baets ◽  
J. Minet ◽  
V. R. N. Pauwels ◽  
S. Lambot ◽  
...  

Abstract. In a hydrological modelling scenario, often the modeller is confronted with external data, such as remotely-sensed soil moisture observations, that become available to update the model output. However, the scale triplet (spacing, extent and support) of these data is often inconsistent with that of the model. Furthermore, the external data can be cursed with epistemic uncertainty. Hence, a method is needed that not only integrates the external data into the model, but that also takes into account the difference in scale and the uncertainty of the observations. In this paper, a synthetic hydrological modelling scenario is set up in which a high-resolution distributed hydrological model is run over an agricultural field. At regular time steps, coarse-scale field-averaged soil moisture data, described by means of possibility distributions (epistemic uncertainty), are retrieved by synthetic aperture radar and assimilated into the model. A method is presented that allows to integrate the coarse-scale possibility distribution of soil moisture content data with the fine-scale model-based soil moisture data. To this end, a scaling relationship between field-averaged soil moisture content data and its corresponding standard deviation is employed.


2016 ◽  
Vol 879 ◽  
pp. 1207-1212 ◽  
Author(s):  
Piotr Macioł ◽  
Danuta Szeliga ◽  
Łukasz Sztangret

A typical multiscale simulation consists of numerous fine scale models, usually one for each computational point of a coarse scale model. One of possible ways of limiting computing power requirements is replacing fine scale models with some simplified and speeded up ersatz ones. In this paper, the authors attempt to develop a metamodel, replacing direct thermodynamic computations of precipitation kinetic with an advanced approximating model. MatCalc simulator has been used for thermodynamic modelling of precipitation kinetic. Typical heat treatment of P91 steel grade was examined. Selected variables were chosen to be modelled with approximating models. Several attempts with various approximation variants (interpolation algorithms and Artificial Neural Networks) have been investigated and its comparison is included in the paper.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 2112-2127 ◽  
Author(s):  
Faruk O. Alpak ◽  
Jeroen C. Vink

Summary Numerical modeling of the in-situ conversion process (ICP) is a challenging endeavor involving thermal multiphase flow, compositional pressure/volume/temperature (PVT) behavior, and chemical reactions that convert solid kerogen into light hydrocarbons and are tightly coupled to temperature propagation. Our investigations of grid-resolution effects on the accuracy and performance of ICP simulations demonstrated that ICP-simulation outcomes (e.g., oil/gas production rates and cumulative volumes) may exhibit relatively large errors on coarse grids, where “coarse” means a gridblock size of more than 3 to 5 m. On the other hand, coarse-scale models are attractive because they deliver favorable computational performance, especially for optimization and uncertainty quantification workflows that demand a large number of simulations. Furthermore, field-scale models become unmanageably large if gridblock sizes of 3 to 5 m or less have to be used. Therefore, there is a clear business need to accelerate the ICP simulations with minimal compromise of accuracy. We developed a novel multiscale-modeling method for ICP that reduces numerical-modeling errors and approximates the fine-scale simulation results on relatively coarse grids. The method uses a two-scale adaptive local-global solution technique. One global coarse-scale and multiple local fine-scale near-heater models are timestepped in a sequentially coupled fashion. At a given global timestep, the global-model solution provides accurate boundary conditions to the local near-heater models. These boundary conditions account for the global characteristics of the thermal-reactive flow and transport phenomena. In turn, fine-scale information about heater responses is upscaled from the local models, and used in the global coarse-scale model. These flow-based effective properties correct the thermal-reactive flow and transport in the global model either explicitly, by updating relevant coarse-grid properties for the next timestep, or implicitly, by repeatedly updating the properties through a convergent iterative scheme. Upon convergence, global coarse-scale and local fine-scale solutions are compatible with each other. We demonstrate the much-improved accuracy and efficiency delivered by the multiscale method by use of a 2D cross-section pattern-scale ICP simulation problem. The following conclusions are reached through numerical testing: (1) The multiscale method significantly improves the accuracy of the simulation results over conventionally upscaled models. The method is particularly effective in correcting the global coarse-scale model through the use of the fine-scale information about heater temperatures to regulate the heat-injection rate into the formation more accurately. The effective coarse-grid properties computed by the multiscale method at every timestep also enhance the accuracy of the ICP simulations, as demonstrated in a dedicated test case, in which a constant heat-injection rate is enforced across models of all investigated resolutions. (2) Multiscale ICP models result in accelerated simulations with a speed-up of four to 16 times with respect to fine-scale models “out of the box” without any special optimization effort. (3) Our multiscale method delivers high-resolution solutions in the vicinity of the heaters at a reduced computational cost. These fine-scale solutions can be used to better understand the evolution of the fluids and solids (e.g., kerogen conversion and coke deposition) in the vicinity of the heaters (several-feet-long spatial scale). Simultaneously, with the fine-scale near-heater solutions, the local-global coupled multiscale model provides key commercial ICP performance indicators at the pattern scale (several-hundred-feet-long spatial scale) such as production functions.


2019 ◽  
Vol 9 (21) ◽  
pp. 4722
Author(s):  
Juergen Geiser ◽  
Paul Mertin

In this paper, we present a model that is based on near–far-field charged bubble formation and transportation in an underlying dielectric liquid. The bubbles are controlled by the dielectric liquid, which is influenced by an external electrical field. This allows us to control the shape and volume of the bubbles in the dielectric liquid, such as water. These simulations are important to close the gap between the formation of charged bubbles, which is a fine-scale model and their transport in the underlying liquid, which is a coarse-scale model. In the fine-scale model, the formation of the bubbles and their influence of the electric-stress is approached by a near-field model, which is done by the Young–Laplace equation plus additional force-terms. In the coarse-scale model, the transport of the bubbles is approached by a far-field model, which is done with a convection-diffusion equation. The models are coupled with a bubble in cell scheme, which interpolates between the fine and coarse scales of the different models. Such a scale-dependent approach allows us to apply optimal numerical solvers for the different fine and coarse time and space scales and help to foresee the fluctuations of the charged bubbles in the E-field. We discuss the modeling approaches, numerical solver methods and we present the numerical results for the near–far-field bubble formation and transport model in a dielectric carrier fluid.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Vahid Esfahanian ◽  
Khosro Ashrafi

In this paper, two categories of reduced-order modeling (ROM) of the shallow water equations (SWEs) based on the proper orthogonal decomposition (POD) are presented. First, the traditional Galerkin-projection POD/ROM is applied to the one-dimensional (1D) SWEs. The result indicates that although the Galerkin-projection POD/ROM is suitable for describing the physical properties of flows (during the POD basis functions’ construction time), it cannot predict that the dynamics of the shallow water flows properly as it was expected, especially with complex initial conditions. Then, the study is extended to applying the equation-free/Galerkin-free POD/ROM to both 1D and 2D SWEs. In the equation-free/Galerkin-free framework, the numerical simulation switches between a fine-scale model, which provides data for construction of the POD basis functions, and a coarse-scale model, which is designed for the coarse-grained computational study of complex, multiscale problems like SWEs. In the present work, the Beam & Warming and semi-implicit time integration schemes are applied to the 1D and 2D SWEs, respectively, as fine-scale models and the coefficients of a few POD basis functions (reduced-order model) are considered as a coarse-scale model. Projective integration is applied to the coarse-scale model in an equation-free framework with a time step grater than the one used for a fine-scale model. It is demonstrated that equation-free/Galerkin-free POD/ROM can resolve the dynamics of the complex shallow water flows. Moreover, the computational cost of the approach is less than the one for a fine-scale model.


Author(s):  
Recep M. Gorguluarslan ◽  
Seung-Kyum Choi

A stochastic multiscale modeling technique is proposed to construct coarse scale representation of a fine scale model for use in engineering design problems. The complexity of the fine scale heterogeneity under uncertainty is replaced with the homogenized coarse scale parameters by seeking agreement between the responses at both scales. Generalized polynomial chaos expansion is implemented to reduce the dimensionality of propagating uncertainty through scales and the computational costs of the upscaling method. It is integrated into a hybrid optimization procedure with the genetic algorithm and sequential quadratic programming. Two structural engineering problems that involve uncertainties in elastic material properties and geometric properties at fine scales are presented to demonstrate the applicability and merit of the proposed technique.


SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 1084-1095 ◽  
Author(s):  
M.. Karimi-Fard ◽  
L.J.. J. Durlofsky

Summary We present a new approach for representing wells in coarse-scale reservoir simulation models. The technique is based on an expanded well model concept which provides a systematic procedure for the construction of the near-well grid. The method proceeds by first defining an underlying fine-scale model, in which the well and any key near-well features such as hydraulic fractures are fully resolved using an unstructured grid. In the (coarse) simulation model, the geometry of the grid in the expanded well region, and the associated "radial" transmissibilities, are determined from the solution of a fine-scale, single-phase, well-driven flow problem. The coarse-scale transmissibilities outside of the well region are computed using existing local upscaling techniques or by applying a new global upscaling procedure. Thus, through use of near-well flow-based gridding and generalized local grid refinement, this methodology efficiently incorporates the advantages of highly-resolved unstructured grid representations of wells into coarse models. The overall model provided by this technique is compatible with any reservoir simulator that allows general unstructured cell-to-cell connections (model capabilities, in terms of flow physics, are defined by the simulator). The expanded well modeling approach is applied to challenging 3D problems involving injection and production in a low-permeability heterogeneous reservoir, tight-gas production by a hydraulically-fractured well, and production in a gas-condensate reservoir. In the first two cases, where it is possible to simulate the fine-grid unstructured model, results using the expanded well model closely match the reference solutions, while standard approaches lead to significant error. In the gas-condensate example, which involves a nine-component compositional model, the reference solution is not computed, but the solution using the expanded well model is shown to be physically reasonable while standard coarse-grid solutions show large variation under grid refinement.


Sign in / Sign up

Export Citation Format

Share Document