Analytical Upgridding Method To Preserve Dynamic Flow Behavior
Summary A geocellular model contains millions of gridblocks and needs to be upscaled before the model can be used as an input for flow simulation. Available techniques for upgridding vary from simple methods such as proportional fractioning to more complicated methods such as maintaining heterogeneities through variance calculations. All these methods are independent of the flow process for which simulation is going to be used, and are independent of well configuration. We propose a new upgridding method that preserves the pressure profile at the upscaled level. It is well established that the more complex the flow process, the more detailed the level of heterogeneity needed in the simulation model. In general, ideal upscaling is the process that preserves the "pressure profile" from the fine-scale model under the applicable flow process. In our method, we upgrid the geological model using simple flow equations in porous media. However, it should be remembered that to obtain a better match between fine scale and coarse scale, we also need to use appropriate upscaling of the reservoir properties. The new method is currently developed for single-phase flow; however, we used it for both single-phase and two-phase flows for 2D and 3D cases. The method differs fundamentally from the other methods that try to preserve heterogeneities. In those methods, gridblocks are combined that have similar velocities (or other properties) by assuming constant pressure drop across the blocks. Instead, we combine the gridblocks that have similar pressure profiles, although to release some of our assumptions such as having constant velocities in gridblocks, we balance our equation with the K2 term. The procedure is analytical and, hence, very efficient, but preserves the pressure profile in the reservoir. The gridblocks (or layers) are combined in a way so that the difference between fine- and coarse-scale pressure profiles is minimized. In addition, we also propose two new criteria that allow us to choose the optimum number of layers more accurately so that a critical level of heterogeneity is preserved. These criteria provide insight into the overall level of heterogeneity in the reservoir and the effectiveness of the layering design. We compare the results of our method with proportional layering and the King et al. method (King et al. 2006) and show that, for the same number of layers, the proposed method captures the results of the fine-scale model better. We show that the layer merging not only depends on the variation in the permeability between the gridblocks (K2 term), but also on the relative magnitude of the permeability values by combining 1/K2 and K2 terms.