Will Carbon Dioxide Injection in Shale Reservoirs Produce from the Shale Matrix, Natural Fractures, or Hydraulic Fractures?

2021 ◽  
Author(s):  
Sherif Fakher ◽  
Youssef Elgahawy ◽  
Hesham Abdelaal ◽  
Abdulmohsin Imqam

Abstract Enhanced oil recovery (EOR) in shale reservoirs has been recently shown to increase oil recovery significantly from this unconventional oil and gas source. One of the most studied EOR methods in shale reservoirs is gas injection, with a focus on carbon Dioxide (CO2) mainly due to the ability to both enhance oil recovery and store the CO2 in the formation. Even though several shale plays have reported an increase in oil recovery using CO2 injection, in some cases this method failed severely. This research attempts to investigate the ability of the CO2 to mobilize crude oil from the three most prominent features in the shale reservoirs, including shale matrix, natural fractures, and hydraulically induced fracture. Shale cores with dimensions of 1 inch in diameter and approximately 1.5 inch in length were used in all experiments. The impact of CO2 soaking time and soaking pressure on the oil recovery were studied. The cores were analyzed to understand how and where the CO2 flowed inside the cores and which prominent feature resulted in the increase in oil recovery. Also, a pre-fractured core was used to run an experiment in order to understand the oil recovery potential from fractured reservoirs. Results showed that oil recovery occurred from the shale matrix, stimulation of natural fractures by the CO2, and from the hydraulic fractures with a large volume coming from the stimulated natural fractures. By understanding where the CO2 will most likely be most productive, proper design of the CO2 EOR in shale can be done in order to maximize recovery and avoid complications during injection and production which may lead to severe operational problems.

SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 112-120 ◽  
Author(s):  
Øyvind Eide ◽  
Martin A. Fernø ◽  
Zachary Alcorn ◽  
Arne Graue

Summary This work demonstrates that diffusion may be a viable oil-recovery mechanism in fractured reservoirs during injection of carbon dioxide (CO2) for enhanced oil recovery, depending on the CO2 distribution within the fracture network and distance between fractures. High oil recovery was observed during miscible, supercritical CO2 injection (RF = 86% original oil in place) in the laboratory with a fractured chalk core plug with a large permeability contrast. Dynamic 3D fluid saturations from computed-tomography (CT) imaging made it possible to study the local oil displacement in the vicinity of the fracture, and to calculate an effective diffusion coefficient with analytical methods. The obtained diffusion coefficient varies between 0.83 and 1.2 ×10−9m2/s, depending on the method used for calculation. A numerical sensitivity analysis, with a validated numerical model that reproduced the experiments, showed that the rate of oil production during CO2 injection declined exponentially with increasing diffusion lengths from the CO2-filled fracture and oil-filled matrix. In a numerical upscaling effort, with the experimentally achieved diffusion coefficient, oil-recovery rates and local flow were studied in an inverted five-spot pattern in a heavily fractured carbonate reservoir.


2014 ◽  
Vol 17 (02) ◽  
pp. 286-301 ◽  
Author(s):  
K.. Naderi ◽  
T.. Babadagli

Summary Because of low efficiencies and the high cost of the individual injection of steam and solvent for heavy-oil recovery, their hybrid applications have gained significant attention recently. Although numerous laboratory studies exist and there are a considerable number of field projects for sandstone environments, fractured carbonates lack technologies to drain matrix oil efficiently. An alternative-method injection of solvent and steam was proposed and tested earlier (Babadagli and Al-Bahlani 2008). This process applies steam initially to condition the matrix oil for succeeding solvent injection and steam reinjection to retrieve solvent in the matrix and to recover additional upgraded oil. The present study uses carbon dioxide (CO2) as a solvent and compares it with hydrocarbon solvents in this type of application. To clarify the physics of the process and to test the applicability of the method for different reservoir and injection conditions, we conducted a series of experiments by first injecting steam, followed by CO2 injection. In the third cycle, steam was injected again to produce upgraded oil in the matrix. The experiments were performed under static conditions (soaking sand and carbonate samples in steam or CO2 chambers) at different temperatures and pressures. CO2 is shown to be a reasonable alternative for hydrocarbon solvents in such a process in terms of cost and benefits by reducing the solvent expenses, keeping the oil-production levels, and disposing of a greenhouse gas.


2020 ◽  
Vol 72 (12) ◽  
pp. 33-33
Author(s):  
Chris Carpenter

The final afternoon of the 2020 ATCE saw a wide-ranging virtual special session that covered an important but often overlooked facet of the unfolding digitalization revolution. While the rising wave of digital technology usually has been associated with production optimization and cost savings, panelists emphasized that it can also positively influence the global perception of the industry and enhance the lives of its employees. Chaired by Weatherford’s Dimitrios Pirovolou and moderated by John Clegg, J.M. Clegg Ltd., the session, “The Impact of Digital Technologies on Upstream Operations To Improve Stakeholder Perception, Business Models, and Work-Life Balance,” highlighted expertise taken from professionals across the industry. Panelists included petroleum engineering professor Linda Battalora and graduate research assistant Kirt McKenna, both from the Colorado School of Mines; former SPE President Darcy Spady of Carbon Connect International; and Dirk McDermott of Altira Group, an industry-centered venture-capital company. Battalora described the complex ways in which digital technology and the goal of sustainability might interact, highlighting recent SPE and other industry initiatives such as the GAIA Sustainability Program and reviewing the United Nations Sustainable Development Goals (SDGs). McKenna, representing the perspective of the Millennial generation, described the importance of “agile development,” in which the industry uses new techniques not only to improve production but also to manage its employees in a way that heightens engagement while reducing greenhouse-gas emissions. Addressing the fact that greater commitment will be required to remove the “tougher two-thirds” of the world’s hydrocarbons that remain unexploited, Spady explained that digital sophistication will allow heightened productivity for professionals without a sacrifice in quality of life. Finally, McDermott stressed the importance of acknowledging that the industry often has not rewarded shareholders adequately, but pointed to growing digital components of oil and gas portfolios as an encouraging sign. After the initial presentations, Clegg moderated a discussion of questions sourced from the virtual audience. While the questions spanned a range of concerns, three central themes included the pursuit of sustainability, with an emphasis on carbon capture; the shape that future work environments might take; and how digital technologies power industry innovation and thus affect public perception. In addressing the first of these, Battalora identified major projects involving society-wide stakeholder involvement in pursuit of a regenerative “circular economy” model, such as Scotland’s Zero Waste Plan, while McKenna cited the positives of CO2-injection approaches, which he said would involve “partnering with the world” to achieve both economic and sustainability goals. While recognizing the importance of the UN SDGs in providing a global template for sustainability, McDermott said that the industry must address the fact that many investors fear rigid guidelines, which to them can represent limitations for growth or worse.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Saira ◽  
Emmanuel Ajoma ◽  
Furqan Le-Hussain

Summary Carbon dioxide (CO2) enhanced oil recovery is the most economical technique for carbon capture, usage, and storage. In depleted reservoirs, full or near-miscibility of injected CO2 with oil is difficult to achieve, and immiscible CO2 injection leaves a large volume of oil behind and limits available pore volume (PV) for storing CO2. In this paper, we present an experimental study to delineate the effect of ethanol-treated CO2 injection on oil recovery, net CO2 stored, and amount of ethanol left in the reservoir. We inject CO2 and ethanol-treated CO2 into Bentheimer Sandstone cores representing reservoirs. The oil phase consists of a mixture of 0.65 hexane and 0.35 decane (C6-C10 mixture) by molar fraction in one set of experimental runs, and pure decane (C10) in the other set of experimental runs. All experimental runs are conducted at constant temperature 70°C and various pressures to exhibit immiscibility (9.0 MPa for the C6-C10 mixture and 9.6 MPa for pure C10) or near-miscibility (11.7 MPa for the C6-C10 mixture and 12.1 MPa for pure C10). Pressure differences across the core, oil recovery, and compositions and rates of the produced fluids are recorded during the experimental runs. Ultimate oil recovery under immiscibility is found to be 9 to 15% greater using ethanol-treated CO2 injection than that using pure CO2 injection. Net CO2 stored for pure C10 under immiscibility is found to be 0.134 PV greater during ethanol-treated CO2 injection than during pure CO2 injection. For the C6-C10 mixture under immiscibility, both ethanol-treated CO2 injection and CO2 injection yield the same net CO2 stored. However, for the C6-C10 mixture under near-miscibility,ethanol-treated CO2 injection is found to yield 0.161 PV less net CO2 stored than does pure CO2 injection. These results suggest potential improvement in oil recovery and net CO2 stored using ethanol-treated CO2 injection instead of pure CO2 injection. If economically viable, ethanol-treated CO2 injection could be used as a carbon capture, usage, and storage method in low-pressure reservoirs, for which pure CO2 injection would be infeasible.


2021 ◽  
pp. 79-90
Author(s):  
Т. A. Pospelova

The article discusses ways to increase the oil recovery factor in already developed fields, special attention is paid to the methods of enhanced oil recovery. The comparative structure of oil production in Russia in the medium term is given. The experience of oil and gas companies in the application of enhanced oil recovery in the fields is analyzed and the dynamics of the growth in the use of various enhanced oil recovery in Russia is estimated. With an increase in the number of operations in the fields, the requirements for the selection of candidates inevitably increase, therefore, the work focuses on hydrodynamic modeling of physical and chemical modeling, highlights the features and disadvantages of existing simulators. The main dependences for adequate modeling during polymer flooding are given. The calculation with different concentration of polymer solution is presented, which significantly affects the water cut and further reduction of operating costs for the preparation of the produced fluid. The possibility of creating a specialized hydrodynamic simulator for low-volume chemical enhanced oil recovery is considered, since mainly simulators are applicable for chemical waterflooding and the impact is on the formation as a whole.


2021 ◽  
Author(s):  
Sherif Fakher ◽  
Youssef Elgahawy ◽  
Hesham Abdelaal ◽  
Abdulmohsin Imqam

Abstract Carbon dioxide (CO2) injection in low permeability shale reservoirs has recently gained much attention due to the claims that it has a large recovery factor and can also be used in CO2 storage operations. This research investigates the different flow regimes that the CO2 will exhibit during its propagation through the fractures, micropores, and the nanopores in unconventional shale reservoirs to accurately evaluate the mechanism by which CO2 recovers oil from these reservoirs. One of the most widely used tools to distinguish between different flow regimes is the Knudsen Number. Initially, a mathematical analysis of the different flow regimes that can be observed in pore sizes ranging between 0.2 nanometer and more than 2 micrometers was undergone at different pressure and temperature conditions to distinguish between the different flow regimes that the CO2 will exhibit in the different pore sizes. Based on the results, several flow regime maps were conducted for different pore sizes. The pore sizes were grouped together in separate maps based on the flow regimes exhibited at different thermodynamic conditions. Based on the results, it was found that Knudsen diffusion dominated the flow regime in nanopores ranging between 0.2 nanometers, up to 1 nanometer. Pore sizes between 2 and 10 nanometers were dominated by both a transition flow, and slip flow. At 25 nanometer, and up to 100 nanometers, three flow regimes can be observed, including gas slippage flow, transition flow, and viscous flow. When the pore size reached 150 nanometers, Knudsen diffusion and transition flow disappeared, and the slippage and viscous flow regimes were dominant. At pore sizes above one micrometer, the flow was viscous for all thermodynamic conditions. This indicated that in the larger pore sizes the flow will be mainly viscous flow, which is usually modeled using Darcy's law, while in the extremely small pore sizes the dominating flow regime is Knudsen diffusion, which can be modeled using Knudsen's Diffusion law or in cases where surface diffusion is dominant, Fick's law of diffusion can be applied. The mechanism by which the CO2 improves recovery in unconventional shale reservoirs is not fully understood to this date, which is the main reason why this process has proven successful in some shale plays, and failed in others. This research studies the flow behavior of the CO2 in the different features that could be present in the shale reservoir to illustrate the mechanism by which oil recovery can be increased.


2019 ◽  
Vol 10 (4) ◽  
pp. 1613-1634 ◽  
Author(s):  
Oladoyin Kolawole ◽  
Ion Ispas

Abstract Hydraulic fracturing treatment is one of the most efficient conventional matrix stimulation techniques currently utilized in the petroleum industry. However, due to the spatiotemporal complex nature of fracture propagation in a naturally- and often times systematically fractured media, the influence of natural fractures (NF) and in situ stresses on hydraulic fracture (HF) initiation and propagation within a reservoir during the hydrofracturing process remains an important issue. Over the past 50 years of advances in the understanding of HF–NF interactions, no comprehensive revision of the state of the knowledge exists. Here, we reviewed over 140 scientific articles on investigations of HF–NF interactions, published over the past 50 years. We highlight the most commonly observed HF–NF interactions and their implications for unconventional oil and gas production. Using observational and quantitative analyses, we find that numerical modeling and simulation is the most prominent method of approach, whereas there are less publications on the experimental approach, and analytical method is the least utilized approach. Further, we suggest how HF–NF interactions can be monitored in real time on the field during a pre-frac test. Lastly, based on the results of our literature review, we recommend promising areas of investigation that may provide more profound insights into HF–NF interactions in such a way that can be directly applied to the optimization of fracture-stimulation field operations.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6619
Author(s):  
Mohamed Mehana ◽  
Qinjun Kang ◽  
Hari Viswanathan

With only less than 10% recovery, the primary production of hydrocarbon from shale reservoirs has redefined the energy equation in the world. Similar to conventional reservoirs, Enhanced Oil Recovery (EOR) techniques could be devised to enhance the current recovery factors. However, shale reservoirs possess unique characteristics that significantly affect the fluid properties. Therefore, we are adopting a molecular simulation approach that is well-suited to account for these effects to evaluate the performance of three different gases, methane, carbon dioxide and nitrogen, to recover the hydrocarbons from rough pore surfaces. Our hydrocarbon systems consists of either a single component (decane) or more than one component (decane and pentane). We simulated cases where concurrent and countercurrent displacement is studied. For concurrent displacement (injected fluids displace hydrocarbons towards the production region), we found that nitrogen and methane yielded similar recovery; however nitrogen exhibited a faster breakthrough. On the other hand, carbon dioxide was more effective in extracting the hydrocarbons when sufficient pressure was maintained. For countercurrent displacement (gases are injected and hydrocarbons are produced from the same direction), methane was found to be more effective, followed by carbon dioxide and nitrogen. In all cases, confinement reduced the recovery factor of all gases. This work provides insights to devise strategies to improve the current recovery factors observed in shale reservoirs.


2020 ◽  
pp. 014459872096083
Author(s):  
Yulong Liu ◽  
Dazhen Tang ◽  
Hao Xu ◽  
Wei Hou ◽  
Xia Yan

Macrolithotypes control the pore-fracture distribution heterogeneity in coal, which impacts stimulation via hydrofracturing and coalbed methane (CBM) production in the reservoir. Here, the hydraulic fracture was evaluated using the microseismic signal behavior for each macrolithotype with microfracture imaging technology, and the impact of the macrolithotype on hydraulic fracture initiation and propagation was investigated systematically. The result showed that the propagation types of hydraulic fractures are controlled by the macrolithotype. Due to the well-developed natural fracture network, the fracture in the bright coal is more likely to form the “complex fracture network”, and the “simple” case often happens in the dull coal. The hydraulic fracture differences are likely to impact the permeability pathways and the well productivity appears to vary when developing different coal macrolithtypes. Thus, considering the difference of hydraulic fracture and permeability, the CBM productivity characteristics controlled by coal petrology were simulated by numerical simulation software, and the rationality of well pattern optimization factors for each coal macrolithotype was demonstrated. The results showed the square well pattern is more suitable for dull coal and semi-dull coal with undeveloped natural fractures, while diamond and rectangular well pattern is more suitable for semi-bright coal and bright coal with more developed natural fractures and more complex fracturing fracture network; the optimum wells spacing of bright coal and semi-bright coal is 300 m and 250 m, while that of semi-dull coal and dull coal is just 200 m.


2003 ◽  
Vol 30 (3) ◽  
pp. 219-241 ◽  
Author(s):  
Adrian G. Glover ◽  
Craig R. Smith

The goal of this paper is to review current impacts of human activities on the deep-sea floor ecosystem, and to predict anthropogenic changes to this ecosystem by the year 2025. The deep-sea floor ecosystem is one of the largest on the planet, covering roughly 60% of the Earth's solid surface. Despite this vast size, our knowledge of the deep sea is poor relative to other marine ecosystems, and future human threats are difficult to predict. Low productivity, low physical energy, low biological rates, and the vastness of the soft-sediment deep sea create an unusual suite of conservation challenges relative to shallow water. The numerous, but widely spaced, island habitats of the deep ocean (for example seamounts, hydrothermal vents and submarine canyons) differ from typical deep-sea soft sediments in substrate type (hard) and levels of productivity (often high); these habitats will respond differently to anthropogenic impacts and climate change. The principal human threats to the deep sea are the disposal of wastes (structures, radioactive wastes, munitions and carbon dioxide), deep-sea fishing, oil and gas extraction, marine mineral extraction, and climate change. Current international regulations prohibit deep-sea dumping of structures, radioactive waste and munitions. Future disposal activities that could be significant by 2025 include deep-sea carbon-dioxide sequestration, sewage-sludge emplacement and dredge-spoil disposal. As fish stocks dwindle in the upper ocean, deep-sea fisheries are increasingly targeted. Most (perhaps all) of these deep-sea fisheries are not sustainable in the long term given current management practices; deep-sea fish are long-lived, slow growing and very slow to recruit in the face of sustained fishing pressure. Oil and gas exploitation has begun, and will continue, in deep water, creating significant localized impacts resulting mainly from accumulation of contaminated drill cuttings. Marine mineral extraction, in particular manganese nodule mining, represents one of the most significant conservation challenges in the deep sea. The vast spatial scales planned for nodule mining dwarf other potential direct human impacts. Nodule-mining disturbance will likely affect tens to hundreds of thousands of square kilometres with ecosystem recovery requiring many decades to millions of years (for nodule regrowth). Limited knowledge of the taxonomy, species structure, biogeography and basic natural history of deep-sea animals prevents accurate assessment of the risk of species extinctions from large-scale mining. While there are close linkages between benthic, pelagic and climatic processes, it is difficult to predict the impact of climate change on deep-sea benthic ecosystems; it is certain, however, that changes in primary production in surface waters will alter the standing stocks in the food-limited, deep-sea benthic. Long time-series studies from the abyssal North Pacific and North Atlantic suggest that even seemingly stable deep-sea ecosystems may exhibit change in key ecological parameters on decadal time scales. The causes of these decadal changes remain enigmatic. Compared to the rest of the planet, the bulk of the deep sea will probably remain relatively unimpacted by human activities and climate change in the year 2025. However, increased pressure on terrestrial resources will certainly lead to an expansion of direct human activities in the deep sea, and to direct and indirect environmental impacts. Because so little is known about this remote environment, the deep-sea ecosystem may well be substantially modified before its natural state is fully understood.


Sign in / Sign up

Export Citation Format

Share Document