Simulation of Intermittent Gas-Bubbly Oil Three Phase Flow in Upward Vertical Pipe Using the Two-Fluid Model

2012 ◽  
Author(s):  
Octavio Cazarez-candia ◽  
Daniel de Jesus Montoya-Hernandez ◽  
Antonio C. Bannwart
SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 374-388 ◽  
Author(s):  
Mahdy Shirdel ◽  
Kamy Sepehrnoori

Summary Multiphase flow models have been widely used for downhole-gauging and production logging analysis in the wellbores. Coexistence of hydrocarbon fluids with water in production wells yields a complex flow system that requires a three-phase flow model for better characterizing the flow and analyzing measured downhole data. In the past few decades, many researchers and commercial developers in the petroleum industry have aggressively expanded development of robust multiphase flow models for the wellbore. However, many of the developed models apply homogeneous-flow models with limited assumptions for slippage between gas and liquid bulks or use purely two-fluid models. In this paper, we propose a new three-phase flow model that consists of a two-fluid model between liquid and gas and a drift-flux model between water and oil in the liquid phase. With our new method, we improve the simplifying assumptions for modeling oil, water, and gas multiphase flow in wells, which can be advantageous for better downhole flow characterization and phase separations in gravity-dominated systems. Furthermore, we developed semi-implicit and nearly implicit numerical algorithms to solve the system of equations. We discuss the stepwise-development procedures for these methods along with the assumptions in our flow model. We verify our model results against analytical solutions for the water faucet problem and phase redistribution, field data, and a commercial simulator. Our model results show very good agreement with benchmarks in the data.


2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


Author(s):  
Hiroyuki Yoshida ◽  
Takeharu Misawa ◽  
Kazuyuki Takase

Two-fluid model can simulate two phase flow less computational cost than inter-face tracking method and particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D, which adopts boundary fitted coordinate system in order to simulate complex shape channel flow. In this paper, boiling two-phase flow analysis in a tight lattice rod bundle is performed by ACE-3D code. The parallel computation using 126CPUs is applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. At height z = 0.5 m, void fraction in the gap region is higher in comparison with that in center region of the subchannel. However, at height of z = 1.1m, higher void fraction distribution exists in center region of the subchannel in comparison with the gap region. The tendency of void fraction to concentrate in the gap region at vicinity of boiling starting point, and to move into subchannel as water goes through rod bundle, is qualitatively agreement with the measurement results by neutron radiography. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight lattice rod bundle with no lift force model (neglecting lift force acting on bubbles) is also performed. From the comparison of numerical results, it is concluded that the effects of lift force model are not so large on overall void fraction distribution in tight lattice rod bundle. However, higher void fraction distribution in center region of the subchannel was not observed in this simulation. It is concluded that the lift force model is important for local void fraction distribution in rod bundles.


Author(s):  
Yoshiteru Komuro ◽  
Atsushi Kodama ◽  
Yoshiyuki Kondo ◽  
Koichi Tanimoto ◽  
Takashi Hibiki

Abstract Two-phase flows are observed in various industrial plants and piping systems. Understanding two-phase flow behaviors such as flow patterns and unsteady void fraction in horizontal and vertical pipes are crucial in improving plant safety. Notably, the flow patterns observed in a large diameter pipe (approx. 4–6 in or larger) are significantly different from those observed in a medium diameter pipe. In a vertical large diameter pipe, no slug flow is observed due to the instantaneous slug bubble breakup caused by the surface instability. Besides, in a horizontal pipe, flow regime transition from stratification of liquid and gas to slug (plug) flow that induces unsteady flow should be taken into account. From this viewpoint, it is necessary to predict the flow regime in horizontal and vertical large diameter pipes with some elbows and to evaluate the unsteady flow regime. In this study, the simulation method based on the two-fluid model is developed. The two-fluid model is considered the most accurate model because the governing equations for mass, momentum, and energy transfer are formulated for each phase. When using the two-fluid model, some constitutive equations should be given in computing the momentum transfer between gas and liquid phases. In this study, several state-of-art constitutive equations of the bubble diameter, the interfacial drag force and non-drag forces such as the lift force and the bubble-bubble collision force, are implemented in the platform of ANSYS FLUENT. The developed simulation method is validated with visualization results and force from an air-water flow at the elbow of the piping system.


Sign in / Sign up

Export Citation Format

Share Document