Impact of Hydraulic Fracture and Subsequent Increased Production Due to In-Situ Stress Changes in the Marcellus Shale.

2012 ◽  
Author(s):  
Adam Clayton Wade ◽  
H. Ilkin Bilgesu
SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2148-2162 ◽  
Author(s):  
Pengcheng Fu ◽  
Jixiang Huang ◽  
Randolph R. Settgast ◽  
Joseph P. Morris ◽  
Frederick J. Ryerson

Summary The height growth of a hydraulic fracture is known to be affected by many factors that are related to the layered structure of sedimentary rocks. Although these factors are often used to qualitatively explain why hydraulic fractures usually have well–bounded height growth, most of them cannot be directly and quantitatively characterized for a given reservoir to enable a priori prediction of fracture–height growth. In this work, we study the role of the “roughness” of in–situ–stress profiles, in particular alternating low and high stress among rock layers, in determining the tendency of a hydraulic fracture to propagate horizontally vs. vertically. We found that a hydraulic fracture propagates horizontally in low–stress layers ahead of neighboring high–stress layers. Under such a configuration, a fracture–mechanics principle dictates that the net pressure required for horizontal growth of high–stress layers within the current fracture height is significantly lower than that required for additional vertical growth across rock layers. Without explicit consideration of the stress–roughness profile, the system behaves as if the rock is tougher against vertical propagation than it is against horizontal fracture propagation. We developed a simple relationship between the apparent differential rock toughness and characteristics of the stress roughness that induce equivalent overall fracture shapes. This relationship enables existing hydraulic–fracture models to represent the effects of rough in–situ stress on fracture growth without directly representing the fine–resolution rough–stress profiles.


2011 ◽  
Vol 291-294 ◽  
pp. 2139-2144
Author(s):  
Yong Shu Jiao ◽  
Mu Hui Fan ◽  
Li Juan Li ◽  
Zong Xi Cai

Based on the analytical solution for the stress field around an inclined borehole in an anisotropic medium, a computer program was developed and a serial parametric study was conducted. The effects of parameters such as degree of anisotropy, borehole inclination, bedding plane inclination and in-situ stress conditions on the stress distribution around a borehole were evaluated. The results showed that medium anisotropy has little effect on borehole fracture analysis at low borehole inclinations, but its influence becomes significant for highly inclined boreholes. As the degree of anisotropy varies the maximum shear stress changes remarkably. This indicates that the degree of anisotropy plays a role in the collapse failure of a borehole. The information generated in these studies can be used in predicting the fracture or collapse-initiating pressures.


1982 ◽  
Vol 22 (03) ◽  
pp. 333-340 ◽  
Author(s):  
Norman R. Warpinski ◽  
James A. Clark ◽  
Richard A. Schmidt ◽  
Clarence W. Huddle

Abstract Laboratory experiments have been conducted to determine the effect of in-situ stress variations on hydraulic fracture containment. Fractures were initiated in layered rock samples with prescribed stress variations, and fracture growth characteristics were determined as a function of stress levels. Stress contrasts of 300 to 400 psi (2 to 3 MPa) were found sufficient to restrict fracture growth in laboratory samples of Nevada tuff and Tennessee and Nugget sandstones. The required stress level was found not to depend on mechanical rock properties. However, permeability and the resultant pore pressure effects were important. Tests conducted at biomaterial interfaces between Nugget and Tennessee sandstones show that the resultant stresses set up near the interface because of the applied overburden stress affect the fracture behavior in the same way as the applied confining stresses. These results provide a guideline for determining the in-situ stress contrast necessary to contain a fracture in a field treatment. Introduction An under-standing of the factors that influence and control hydraulic fracture containment is important for the successful use of hydraulic fracturing technology in the enhanced production of natural gas from tight reservoirs. Optimally, this understanding would provide improved fracture design criteria to maximize fracture surface area in contact with the reservoir with respect to volume injected and other treatment parameters. In formations with a positive containment condition (i.e., where fracturing out of zone is not anticipated), long penetrating fractures could be used effectively to develop the resource. For the opposite case, the options would beto use a small treatment so that large volumes are not wasted in out-of-zone fracturing and to accept a lower productivity improvement, orto reject the zone as uneconomical. These decisions cannot be made satisfactorily unless criteria for vertical fracture propagation are developed and techniques for readily measuring the important parameters are available. Currently, both theoretical and experimental efforts are being pursued to determine the important parameters and their relative effects on fracture growth. Two modes of fracture containment are possible. One is the situation where fracture growth is terminated at a discrete interface. Examples of this include laboratory experiments showing fracture termination at weak or unbonded interfaces and theoretical models that predict that fracture growth will terminate at a material property interface. The other mode may occur when the fracture propagates into the bounding layer, but extensive growth does not take place and the fracture thus is restricted. An example is the propagation of the fracture into a region with an adverse stress gradient so that continued propagation results in higher stresses on the fracture, which limits growth, as suggested by Simonson et al. and as seen in mineback experiments. Another example is the possible restriction caused by propagation into a higher modulus region where the decreased width results in increased pressure drop in the fracture, which might inhibit extensive growth into that region relative to the lower modulus region. Other parameters, such as natural fractures, treatment parameters, pore pressure, etc., may affect either of these modes. Laboratory and mineback experiments have shown that weak interfaces and in-situ stress differences are the most likely factors to contain the fracture, and weak interfaces are probably effective only at shallow depths. Thus, our experiments are being performed to determine the effect of in-situ stresses on fracture containment, both in a uniform rock sample and at material properly interfaces. SPEJ P. 333^


1982 ◽  
Vol 22 (03) ◽  
pp. 321-332 ◽  
Author(s):  
M.E. Hanson ◽  
G.D. Anderson ◽  
R.J. Shaffer ◽  
L.D. Thorson

Abstract We are conducting a U.S. DOE-funded research program aimed at understanding the hydraulic fracturing process, especially those phenomena and parameters that strongly affect or control fracture geometry. Our theoretical and experimental studies consistently confirm the well-known fact that in-situ stress has a primary effect on fracture geometry, and that fractures propagate perpendicular to the least principal stress. In addition, we find that frictional interfaces in reservoirs can affect fracturing. We also have quantified some effects on fracture geometry caused by frictional slippage along interfaces. We found that variation of friction along an interface can result in abrupt steps in the fracture path. These effects have been seen in the mineback of emplaced fractures and are demonstrated both theoretically and in the laboratory. Further experiments and calculations indicate possible control of fracture height by vertical change in horizontal stresses. Preliminary results from an analysis of fluid flow in small apertures are discussed also. Introduction Hydraulic fracturing and massive hydraulic fracturing (MHF) are the primary candidates for stimulating production from tight gas reservoirs. MHF can provide large drainage surfaces to produce gas from the low- permeability formation if the fracture surfaces remain in the productive parts of the reservoir. To determine whether it is possibleto contain these fractures in the productive formations andto design the treatment to accomplish this requires a much broader knowledge of the hydraulic fracturing process. Identification of the parameters controlling fracture geometry and the application of this information in designing and performing the hydraulic stimulation treatment is a principal technical problem. Additionally, current measurement technology may not be adequate to provide the required data. and new techniques may have to be devised. Lawrence Livermore Natl. Laboratory has been conducting a DOE-funded research program whose ultimate goal is to develop models that predict created hydraulic fracture geometry within the reservoir. Our approach has been to analyze the phenomenology of the fracturing process to son out and identify those parameters influencing hydraulic fracture geometry. Subsequent model development will incorporate this information. Current theoretical and stimulation design models are based primarily on conservation of mass and provide little insight into the fracturing process. Fracture geometry is implied in the application of these models. Additionally, pressure and flow initiation in the fractures and their interjection with the fracturing process is not predicted adequately with these models. We have reported previously on some rock-mechanics aspects of the fracturing process. For example, we have studied, theoretically and experimentally, pressurized fracture propagation in the neighborhood of material interfaces. Results of interface studies showed that natural fractures in the interfacial region negate any barrier effect when the fracture is propagating from a lower modulus material toward a higher modulus material. On the other hand, some fracture containment could occur when the fracture is propagating from a higher modulus into a lower modulus material. Effect of moduli changes on the in-situ stress field have to be taken into consideration to evaluate fracture containment by material interfaces. Some preliminary analyses have been performed to evaluate how stress changes when material properties change, but we have not evaluated this problem fully. SPEJ P. 321^


2021 ◽  
Vol 1 ◽  
pp. 187-188
Author(s):  
Moritz Ziegler ◽  
Oliver Heidbach

Abstract. The stress state is a key component for the safety and stability of deep geological repositories for the storage of nuclear waste. For the stability assessment and prediction over the repository lifetime, the stress state is put in relation to the rock strength. This assessment requires knowledge of both the future stress changes and the current in situ stress state. Due to the limited number of in situ stress data records, 3D geomechanical models are used to obtain continuous stress field prediction. However, meaningful interpretation of the stress state model requires quantification of the associated uncertainties that result from the geological, stress and rock-property data. This would require thousands of simulations which in a high-resolution model is called an exhaustive approach. Here we present a feasible approach to reduce computation time significantly. The exhaustive approach quantifies uncertainties that are due to variabilities in stress data records. Therefore, all available data records within a model volume are used individually in separate simulations. Due to the inherent variability in the available data, each simulation represents one of many possible stress states supported by data. A combination of these simulations allows estimation of an individual probability density function for each component of the stress tensor represented by an average value and a standard deviation. If weighting of the data records can be performed, the standard deviation can usually be reduced and the significance of the model result is improved. Alternatively, a range of different stress states supported by the data can be provided with the benefit that no outliers are disregarded, but this comes at the cost of a loss in precision. Both approaches are only feasible since the number of stress data records is limited. However, it is indicated that large uncertainties are also introduced by variabilities in rock properties due to natural intra-lithological lateral variations that are not represented in the geomechanical model or due to measurement errors. Quantification of these uncertainties would result in an exhaustive approach with a high number of simulations, and we use an alternative, feasible approach. We use a generic model to quantify the stress state uncertainties from the model due to rock property variabilities. The main contributor is the Young's module, followed by the density and the Poisson ratio. They affect primarily the σxx and σyy components of the stress tensor, except for the density, which mainly affects the σzz component. Furthermore, a relative influence of the stress magnitudes, the tectonic stress regime and the absolute magnitude of rock properties is observed. We propose to use this information in a post-computation assignment of uncertainties to the individual components of the stress tensor. A range of lookup tables need to be generated that compile information on the effect of different variabilities in the rock properties on the components of the stress tensor in different tectonic settings. This allows feasible quantification of uncertainties in a geomechanical model and increases the significance of the model results significantly.


1996 ◽  
Vol 36 (1) ◽  
pp. 528 ◽  
Author(s):  
J.R. Enever ◽  
N. Yassir ◽  
D.R. Willoughby ◽  
M.A. Addis

The historical and theoretical backgrounds of standard and extended leak-off tests with respect to in-situ stress measurement are discussed and compared with hydraulic fracture stress measurement as practised in other industries. The relative advantages of extended leak-off tests compared with standard tests in this context are discussed and a case made for the extended test procedure. The diagnostics of pressure records obtained from extended leak-off tests are discussed in light of extensive experience obtained from hydraulic fracture stress measurement, with reference to a number of extended leak-off tests conducted in Australia. A conclusion is reached that extended leak-off tests can potentially provide data of quality comparable with that obtained from ideal hydraulic fracture stress measurement, allowing resolution of the in-situ stress field with reasonable reliability in many cases. The results of some Australian extended leak-off tests are discussed and contrasted with corresponding data obtained from standard leak-off tests. A trend is revealed from this data for extended leak-off tests to produce a lower estimate of the minimum stress magnitude than standard leak-off tests.


1982 ◽  
Vol 22 (02) ◽  
pp. 209-218 ◽  
Author(s):  
Sunder H. Advani ◽  
J.K. Lee

Abstract Recently emphasis has been placed on the development and testing of innovative well stimulation techniques for the recovery of unconventional gas resources. The design of optimal hydraulic fracturing treatments for specified reservoir conditions requires sophisticated models for predicting the induced fracture geometry and interpreting governing mechanisms. This paper presents methodology and results pertinent to hydraulic fracture modeling for the U.S. DOE's Eastern Gas Shales Program (EGSP). The presented finite-element model simulations extend available modeling efforts and provide a unified framework for evaluation of fracture dimensions and associated responses. Examples illustrating the role of multilayering, in-situ stress, joint interaction, and branched cracks are given. Selected comparisons and applications also are discussed. Introduction Selection and design of stimulation treatments for Devonian shale wells has received considerable attention in recent years1-3. The production of natural gas from such tight eastern petroliferous basins is dependent on the vertical thickness of the organically rich shale matrix, its inherent fracture system density, anisotropy, and extent, and the communication-link characteristics of the induced fracture system(s). The investigation of stimulation techniques based on resource characterization, reservoir property evaluation, theoretical and laboratory model simulations, and field testing is a logical step toward the development of commercial technology for optimizing gas production and related costs. This paper reports formulations, methodology, and results associated with analytical simulations of hydraulic fracturing for EGSP. The presented model extends work reported by Perkins and Kern,4 Nordgren,5 Geertsma and DeKlerk,6 and Geertsma and Haafkens.7 The simulations provide a finite-element model framework for studying vertically induced fracture responses with the effects of multilayering and in-situ stress considered. In this context, Brechtel et al.,8 Daneshy,9 Cleary,10 and Anderson et al.11 have done recent studies addressing specific aspects of this problem. The use of finite-element model techniques for studying mixed-mode fracture problems encountered in dendritic fracturing and vertical fracture/joint interaction also is illustrated along with application of suitable failure criteria. Vertical Hydraulic Fracture Model Formulations Coupled structural fracture mechanics and fracture fluid response models for predicting hydraulically induced fracture responses have been reported previously.12,13 These simulations incorporate specified reservoir properties, in-situ stress conditions, and stimulation treatment parameters. One shortcoming of this modeling effort is that finite-element techniques are used for the structural and stress intensity simulations, while a finite-difference approach is used to evaluate the leakoff and fracture-fluid response in the vertical crack. A consistent framework for conducting all simulations using finite-element modeling is formulated here.


Sign in / Sign up

Export Citation Format

Share Document