Multistage Horizontal Well Hydraulic Fracturing Stimulation Using Coiled Tubing to Produce Marginal Reserves from Brownfield: Case Histories and Lessons Learned

2015 ◽  
Author(s):  
Amro Ahmad Hassan ◽  
Ahmed Ali Mohamed Abdel Meguid ◽  
Sayed Arshad Waheed ◽  
Mohamed Salah ◽  
Essam Abdel Karim
2016 ◽  
Author(s):  
Ali Al-Ghaithi ◽  
Fahad Alawi ◽  
Ernest Sayapov ◽  
Ehab Ibrahim ◽  
Najet Aouchar ◽  
...  

2021 ◽  
Author(s):  
Saad Hamid ◽  
Vikram Unnikrishnan ◽  
Abdulrahman Aljughayman

Abstract This paper presents a systematic workflow/methodology developed to evaluate the milling operations using coiled tubing to remove frac plugs in a well with deformed liner, post hydraulic fracturing. This paper also presents the challenges encountered during intervention and steps on how they were mitigated. The well was completed by hydraulic fracturing of five stages, each separated by a frac plug. Post stimulation, coiled tubing was mobilized to mill the plugs and provide a full bore to begin production. After spending substantial time while attempting to mill in the initial run, decision was made to POOH and inspect the BHA. It was observed that the mill had significant metal loss on the outer periphery with no damage to the mill face, which thereby concluded the presence of liner damage. A strategy was developed on how to remediate this challenge. Multiple coiled tubing diagnostic runs were performed with real-time coiled tubing capabilities, which included cleanout, camera and caliper runs. Results of each coiled tubing run performed was carefully evaluated to estimate the extent of liner damage. The caliper and video camera runs were important to determine the new reduced ID of the liner. An initial milling attempt with a 3.33" OD mill was performed, which was the smallest size based on the plug manufacturers recommendation. However due to the specific nature of liner damage it could not pass through the restriction. After further discussions, a calculated risk was taken to run with a 3.125" OD mill, which was significantly smaller than the manufacturer's recommendation, and posed an inherent threat of milling through the core of the plug, while leaving the slips intact. This however did not happen, and all four plugs were successfully milled out from the liner, allowing full bore access and well to be flowed back. This paper will act as a guideline on how to design and execute an intervention operation in deformed liners.


2021 ◽  
Vol 73 (06) ◽  
pp. 58-59
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 203226, “First Multistage Fracturing of Horizontal Well Drilled in a Conventional Tight Carbonate Reservoir in an Onshore Field in the UAE: Challenges and Lessons Learned,” by Muhammad Aftab, SPE, Noor Talib, and Maad Subaihi, ADNOC, et al., prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. The reservoir upon which this case study is focused is a tight, low-permeability carbonate reservoir with thin layers. The objective of the field case was to increase and sustain productivity of a pilot well consisting of an openhole completion. The complete paper summarizes the design processes, selection criteria, challenges, and lessons learned during design and execution phases. The study may provide a potential approach for selecting the proper hydraulic fracturing method and technique in similar cases. Introduction Reservoir X is divided into six layers. Layers X-3 through X-6 have reasonable porosity development; valid pressure points exist in X-3 and X-6. Pumpout was performed while collecting samples from X-3 and X-6, followed by short buildups. Production-logging-tool measurement was performed and found two major oil-producing layers across X-3 (60% of total production) and X-6 (40% of total production). The remaining intervals of the perforation were almost inactive. Petrophyscial and testing results of vertical Well A resulted in a decision to drill a horizontal oil producer (Well B) through Layer X-3. Well B was steered with a 2,220-ft horizontal length, out of which 1,930 ft was inside X-3 and 290 ft were above X-3 be-cause of a fault throw of 16 ft true vertical depth. The well was steered with a horizontal length of 2,080 ft in X-6. Well B was completed with a 3½-in. completion and horizontal section as an openhole. Matrix stimulation using coiled tubing was performed with 15% hydrochloric acid in Well B. The well ceased to flow after 2 weeks of declining production. Rapid pressure depletion was observed in Well B. Localized depletion around the wellbore was anticipated because of poor matrix/matrix connectivity. After comprehensive studies and risk assessments, the decision was made to recomplete Well B with a cemented fracturing string to perform hydraulic fracturing with the plug-and-perf technique. This technique will allow flexibility of stage count and stage spacing and a multi-cluster design to maximize the stimulated reservoir volume (SRV) along the upper, middle, and lower layers. In addition, the operator and service provider collaborated to enhance this design through a zero-overflush technique with diverting agents. The complete paper provides a detailed discussion of the core measurement and 1D mechanical Earth model used in the hydraulic fracturing design. Hydraulic Fracturing Design The main challenge in fracturing Well B was to ensure that the fracture generated is contained within the reservoir. Well B is completed in two layers (X-3 and X-6). The bottom part of the well is in X-6 and close to another underlying reservoir (Fig. 1).


2022 ◽  
Author(s):  
Maria Serena Magna Detto Calcaterra ◽  
Pierluigi Sedda ◽  
Giacomo Fulceri ◽  
Salvatore Luppina ◽  
Luca Mauri ◽  
...  

Abstract Primary production mechanism of a clean sandstone reservoir in a brownfield for oil production has been recently changed from natural depletion to waterflooding. Despite the apparently moderate petro-physical properties of the formation, injector wells performances were observed to be extremely poor, mainly due to: high drilling-induced formation damage and Fluids interaction within the reservoir (injection across the oil rim section). Several stimulation technologies have been applied to improve wells injection capability for pressure support optimization. Re-perforation via abrasive jetting, perforations wash through coiled tubing and various acid formulations via bullheading were attempted without achieving any significant increase in injectivity. Considering the modest rock permeability, the need to access a wider formation area to improve oil sweep efficiency and the crucial requirement to re-pressurize the reservoir, an additional card was played as last resort: hydraulic fracturing. This technique was not new to the area and already experimented by different operators. Several producer wells in different layers were hydraulic fracturing stimulated with proppant and/or acid in the past with a good rate of success. Why not to try then? Given the past experience on the same field with hydraulic fracturing in oil producers and accounting for well integrity and potential injectivity, one was chosen as suitable candidate. Offset wells hystorical data were used to build a hydraulic fracturing reservoir model and plan for the activity in details; operator and service providers engaged in a Frac Well On Paper activity in order to reduce any margin of error during field operations. An approach that proved successful. From there, the first trial well was planned and performed successfully. 4 other hydraulic fracturing jobs on 4 wells followed at close distance in time with different, but steadily comforting, results. Injection was improved from negligible initial values up to 2000 mc/day for the post-stimulation condition, exceeding the preliminary expectations. This paper introduces the steps taken to start the hydraulic fracturing campaign, the decision process that led to the design of the treatment, an overview of the execution phases, results well by well and lessons learned to optimize future campaigns.


2022 ◽  
Author(s):  
Ahmed Al Shueili ◽  
Musallam Jaboob ◽  
Hussain Al Salmi

Abstract Efficient multistage hydraulic fracturing in horizontal wells in tight-gas formations with multilayered and laminated reservoirs is a very challenging subject matter; due to formation structure, required well trajectory, and the ability to establish a conductive and permanent connection between all the layers. BP Oman had initiated the technical journey to deliver an effective horizontal well multistage frac design through learnings obtained during three key pilot horizontal wells. Since these initial wells, additional candidates have been drilled and stimulated, resulting in further advancement of the learning curve. Many aspects will be covered in this paper, that will describe how to facilitate the most effective hydraulic fracture placement and production performance, under these laminated conditions. These approaches will include the completion and perforation selection, fracture initiation zone selection, fracture height consideration, frac fluid type and design. The paper will go on to describe a range of different surveillance options, including clean-up and performance surveillance as well as number of other factors. The experiences that have been gained provide valuable insight and learning about how to approach a multistage fracturing horizontal well program in this kind of depositional environment. Additionally, how these lessons can potentially be subsequently adapted and applied to access resources in the more challenging and higher risk areas of the field. For example, this paper will present direct comparison of over and under-displaced stages; differences in execution and production for cased hole and open hole completions; and many other variables that always under discussion for hydraulic fracturing in horizontal wells. This paper describes in detail the results of many multistage fracturing trials by BP Oman in horizontal wells drilled in challenging multilayered and laminated tight-gas reservoirs. These findings may help to cut short learning curve in similar reservoirs in the Middle East Region and elsewhere.


2015 ◽  
Author(s):  
Amro Hassan ◽  
Ahmed Abd ElMeguid ◽  
Arshad Waheed ◽  
Mohamed Salah ◽  
Essam Abd ElKarim

Abstract The Baharyia formation is a common reservoir in the Western Desert of Egypt. It is characterized as a heterogeneous reservoir with low sand quality. It is comprised of fine-grained sandstone, thin, laminated, sand-poor parasequences with shale interbeds. The heterogeneity and low permeability of the Upper Baharyia reservoirs are the primary challenges to maintaining economic well productivity. The interest in developing low permeability reservoirs stems from favorable economics attributed to advancements in horizontal well drilling and hydraulic fracturing technology, offering methods to increase production by increasing the contact area of the producing interval. Subsequently, it became apparent that wellbore contact alone was not always sufficient for providing production increases expected, thus requiring multistage hydraulic fracturing (MSHF) stimulation treatments to achieve production targets. Primary well production analysis revealed that the cumulative production from the horizontal well discussed was enhanced from 37 to 70% of recoverable reserve and the recovery factor was doubled. From a production analogy standpoint, these resulted in reduced drilling of three vertical wells and had direct economic benefits by reducing the installed artificial lift strings, related expensive artificial lift equipment repairs, and the number of necessary workovers. This paper takes a multidisciplinary approach to help understand productivity enhancement of low permeability reservoirs in the Western Desert of Egypt, through a detailed analysis of well performance and successful implementation of MSHF in horizontal wells to maximize drainage volume around the well. It is intended to serve as guidelines to help operators facing similar challenges.


2015 ◽  
Author(s):  
Sahil Malhotra ◽  
Tom Merrifield ◽  
Cynthia Lynch ◽  
Dave Larue ◽  
Angela Madding ◽  
...  

Abstract Coiled tubing fracturing has been successfully applied in multi-stage vertical well stimulation in the Belridge diatomite in the Lost Hills field. This same methodology was used to complete two northwest-trending horizontal wells drilled on the northeast flank of the Lost Hills anticlinal structure that targeted thinner higher oil-saturation strata, separated by thicker low oil-saturation intervals. The target reservoir is comprised of high porosity, low matrix permeability Opal A diatomite. The perforations were jetted by pumping sand slurry down the coiled tubing and the frac job was pumped down the annulus. The stages were isolated by setting sand plugs. Nine and twelve stages were pumped in the two wells respectively. The perforation locations for different stages were selected in areas with: 1) high resistivity and inferred high oil saturations, 2) absence of hydraulic fractures from nearby wells, 3) excellent cement bonding, and 4) low intensity of natural fractures. These assessments followed logging while drilling (LWD) gamma ray, induction resistivity and azimuthally focused resistivity (image) logs and cased-hole ultrasonic image tool (USIT) run with the aid of a tractor. The hydraulic fractures were monitored using surface tiltmeter sensors. Oil and water soluble tracers were pumped to determine the relative production contribution from the stages and fracture fluid cleanup, respectively, from the stages. All the jobs could be successfully pumped without any screen outs. Challenges were faced in setting sand plugs and isolating stages. Large fracture widths and low leak-off into the formation led to difficulty in forming sand bridges at the perforations and concentrating sand in the wellbore for the plugs. Surface tiltmeters showed excessive fracture height growth. Tracer results showed that 20-30% of the stages contributed to 50-60% of the production. Stages with higher treating pressures contributed less towards production. This could be attributed to near wellbore tortuosity in these stages. Proppant flowback was encountered in one well, and after an effective clean up the production rose. The study illustrates how integration of various aspects such as completion design, fracture pressure analysis and diagnostics combined with geologic and reservoir information can help in identifying challenges and finding potential solutions of hydraulic fracturing. The findings highlight that the technology most suitable for vertical well stimulation might not be favorable for horizontal well stimulation.


Sign in / Sign up

Export Citation Format

Share Document