Reservoir Simulation of Hydrogen Sulfide Production During a Steam-Assisted-Gravity-Drainage Process by Use of a New Sulfur-Based Compositional Kinetic Model

SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 080-093 ◽  
Author(s):  
Simon V. Ayache ◽  
Violaine Lamoureux-Var ◽  
Pauline Michel ◽  
Christophe Preux

Summary Steam injection is commonly used as a thermal enhanced-oil-recovery (EOR) method because of its efficiency for recovering hydrocarbons, especially from heavy-oil and bitumen reservoirs. Reservoir models simulating this process describe the thermal effect of the steam injection, but generally neglect the chemical reactions induced by the steam injection and occurring in the reservoir. In particular, these reactions can lead to the generation and production of the highly toxic and corrosive acid gas hydrogen sulfide (H2S). The overall objective of this paper is to quantitatively describe the chemical aquathermolysis reactions that occur in oil-sands reservoirs undergoing steam injections and to provide oil companies with a numerical model for reservoir simulators to forecast the H2S-production risks. For that purpose, a new sulfur-based compositional kinetic model has been developed to reproduce the aquathermolysis reactions in the context of reservoir modeling. It is derived from results gathered on an Athabasca oil sand from previous laboratory aquathermolysis experiments. In particular, the proposed reactions model accounts for the formation of H2S issued from sulfur-rich heavy oils or bitumen, and predicts the modification of the resulting oil saturate, aromatic, resin, and asphaltene (SARA) composition vs. time. One strength of this model is that it is easily calibrated against laboratory-scale experiments conducted on an oil-sand sample. Another strength is that its calibration is performed while respecting the constraints imposed by the experimental data and the theoretical principles. In addition, in this study no calibration was needed at reservoir scale against field-production data. In the paper, the model is first validated with laboratory-scale simulations. The thermokinetic modeling is then coupled with a 2D reservoir simulation of a generic steam-assisted gravity drainage (SAGD) process applied on a generic Athabasca oil-sand reservoir. This formulation allows investigating the H2S generation at reservoir scale and quantifying its production. The H2S- to bitumen-production ratio against time computed by the reservoir simulation is found to be consistent with production data from SAGD operations in Athabasca, endorsing the proposed methodology.

SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1002-1015 ◽  
Author(s):  
Mazda Irani ◽  
Sahar Ghannadi

Summary Steam-assisted gravity drainage (SAGD) is the preferred method to extract bitumen from Athabasca oil-sand reservoirs in western Canada. Bitumen at reservoir conditions is immobile because of high viscosity, and its saturation is typically large, which limits the injectivity of steam at in-situ conditions. In current industry practice, steam is circulated within injection and production wells. In theory, wells should be converted to SAGD production mode after a period when bitumen is mobile and communication is established between the injector and the producer. Operators use temperature-falloff data to predict successful conversion time. But temperature-falloff data are evaluated qualitatively, and there is not an analytical/numerical framework in which one can use such data. Although the bitumen heating sounds simple, approach wells are failing after steam injection because of steam breakthrough or sand production. Most of these wells are periodically returned to circulation/bullheading to ramp up production rates and heal the hot spots. Most of such failures are associated with early conversion to full SAGD, which shows the need to formulate an analytical/numerical framework to predict the right timing for conversion to full SAGD. In this presentation, the time of flight (ToF) is effectively used to convert spatial variations of temperature into time response of temperature variation at the well sandface. ToF defines the time an oil droplet needs to travel through a medium—more specifically, from its current location to the well sandface. By solving the heat transfer and Darcy's law simultaneously, the ToF is converted to a relationship of the temperature vs. time profile at the producer. This approach has been applied to SAGD well pairs with different geology, and the temperature-falloff trends are presented.


SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 311-333 ◽  
Author(s):  
Sahar Ghannadi ◽  
Mazda Irani ◽  
Rick Chalaturnyk

Summary Steam-assisted gravity drainage is the method of choice to extract bitumen from Athabasca oil-sand reservoirs in Western Canada. Under reservoir conditions, bitumen is immobile because of high viscosity, and its typically high level of saturation limits the injectivity of steam. In current industry practice, steam is circulated within injection and production wells. Operators keep the steam circulating until mobile bitumen breaks through the producer and communication is established between the injector and the producer. The “startup” phase is a time-consuming process taking three or more months with no oil production. A variety of processes could be used to minimize the length of the startup phase, such as electromagnetic (EM) heating in either the induction (medium frequency) or radio-frequency ranges. Knowledge of the size of the hot zone formed by steam circulation and of the benefits of simultaneous EM-heating techniques increases understanding of the startup process and helps to minimize startup duration. The aim of the present work is to introduce an analytical model to predict startup duration for steam circulation with and without EM heating. Results reveal that resistive (electrothermal) heating with/without brine injection cannot be a preferable method for mobilizing the bitumen in startup phase. Induction slightly decreases startup time at frequencies smaller than 10 kHz, and at 100 kHz it can reduce startup time to less than two months.


2010 ◽  
Author(s):  
Weiqiang Li ◽  
Daulat D. Mamora

Abstract Steam Assisted Gravity Drainage (SAGD) is one successful thermal recovery technique applied in the Athabasca oil sands in Canada to produce the very viscous bitumen. Water for SAGD is limited in supply and expensive to treat and to generate steam. Consequently, we conducted a study into injecting high-temperature solvent instead of steam to recover Athabasca oil. In this study, hexane (C6) coinjection at condensing condition is simulated using CMG STARS to analyze the drainage mechanism inside the vapor-solvent chamber. The production performance is compared with an equivalent steam injection case based on the same Athabasca reservoir condition. Simulation results show that C6 is vaporized and transported into the vapor-solvent chamber. At the condensing condition, high temperature C6 reduces the viscosity of the bitumen more efficiently than steam and can displace out all the original oil. The oil production rate with C6 injection is about 1.5 to 2 times that of steam injection with oil recovery factor of about 100% oil initially-in-place. Most of the injected C6 can be recycled from the reservoir and from the produced oil, thus significantly reduce the solvent cost. Results of our study indicate that high-temperature solvent injection appears feasible although further technical and economic evaluation of the process is required.


2019 ◽  
Vol 38 (4) ◽  
pp. 801-818
Author(s):  
Ren-Shi Nie ◽  
Yi-Min Wang ◽  
Yi-Li Kang ◽  
Yong-Lu Jia

The steam chamber rising process is an essential feature of steam-assisted gravity drainage. The development of a steam chamber and its production capabilities have been the focus of various studies. In this paper, a new analytical model is proposed that mimics the steam chamber development and predicts the oil production rate during the steam chamber rising stage. The steam chamber was assumed to have a circular geometry relative to a plane. The model includes determining the relation between the steam chamber development and the production capability. The daily oil production, steam oil ratio, and rising height of the steam chamber curves influenced by different model parameters were drawn. In addition, the curve sensitivities to different model parameters were thoroughly considered. The findings are as follows: The daily oil production increases with the steam injection rate, the steam quality, and the degree of utilization of a horizontal well. In addition, the steam oil ratio decreases with the steam quality and the degree of utilization of a horizontal well. Finally, the rising height of the steam chamber increases with the steam injection rate and steam quality, but decreases with the horizontal well length. The steam chamber rising rate, the location of the steam chamber interface, the rising time, and the daily oil production at a certain steam injection rate were also predicted. An example application showed that the proposed model is able to predict the oil production rate and describe the steam chamber development during the steam chamber rising stage.


SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1721-1742 ◽  
Author(s):  
Mazda Irani ◽  
Ian Gates

Summary Li et al. (2004) described three zones at the edge of steam chambers on the basis of drainage conditions: drained, partially drained, and undrained. In the drained zone, the pore pressure is controlled by injection pressure, and fluid mobility within this region is sufficient to drain additional pore pressures because of shear dilation and pore-fluid thermal expansion. The undrained zone lies beyond the partially drained zone and extends to virgin reservoir far beyond the chamber. In this zone shearing behaves under undrained conditions; by this, Li et al. (2004) mean no volume change occurs but shear lead to changes in pore pressure. Li et al. (2004) proposed that the boundaries of these zones are dependent on bitumen viscosity, which relates to the temperature distribution beyond the steam interface. Because drained/undrained conditions affect the geomechanics at the edge of the chamber, we investigate whether the assumption of Li et al. (2004) that there is no volume change within the sheared zone is correct and is supported by field data. Here, we establish the physics associated with the undrained zone at the edge of steam-assisted gravity-drainage steam chamber and explore the pressure front vs. temperature front of different oil-sand field projects. The results reveal that the drained zone governed by pressure-front advancement is greater in extent than the sheared zone. The thermodynamics of the undrained zone are discussed to derive a new theory for mechanothermal phenomena at the edge of the chamber. The results from the theory show that the drained zone extends beyond the temperature front and thus, from a geomechanical point of view, the system solely consists of the drained and partially drained zones.


SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 503-512 ◽  
Author(s):  
Jyotsna Sharma ◽  
Ian D. Gates

Summary Steam-assisted gravity drainage (SAGD) has become the preferred process to recover bitumen from Athabasca deposits in Alberta. The method consists of a lower horizontal production well, typically located approximately 2 m above the base of the oil zone, and an upper horizontal injection well located roughly 5 to 10 m above the production well. Steam flows from the injection well into a steam chamber that surrounds the wells and releases its latent heat to the cool oil sands at the edge of the chamber. This research re-examines heat transfer at the edge of the steam chamber. Specifically, a new theory is derived to account for convection of warm condensate into the oil sand at the edge of the chamber. The results show that, if the injection pressure is higher than the initial reservoir pressure, convective heat transfer can be larger than conductive heat transfer into the oil sand at the edge of the chamber. However, enhancement of the heat-transfer rate by convection may not necessarily imply higher oil rates; this can be explained by relative permeability effects at the chamber edge. As the condensate invades the oil sand, the oil saturation drops and, consequently, the oil relative permeability falls. This, in turn, results in the reduction of the oil mobility, despite the lowered oil viscosity because of higher temperature arising from convective heat transfer.


Sign in / Sign up

Export Citation Format

Share Document