How Far Can We Push the Boundary of Horizontal Drilling? A Rivalry Between Wellbore Friction and Drillpipe Buoyant Weight and Stiffness

Author(s):  
Mehran Mehrabi ◽  
Stefan Miska
2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


Author(s):  
Svetlana Punanova

This research considered the content of trace elements (TE), including potentially toxic elements (PTE) in shale plays and deposits in various regions of the world. Their comparative analysis was carried out and the highest concentrations of PTE in the shales of some regions were revealed. The author notes that the destruction of organometallic compounds occurs during the development of shale hydrocarbon (HC) using horizontal drilling with hydraulic fracturing – injecting large volumes of chemicals while increasing the temperature. During such destruction processes, PTE can escape into the environment: into groundwater, soil layers, and other objects of economic use, and also deteriorate well equipment. In connection with the noted environmental hazards present during the development of shale HC, this paper proposes to monitor the content of TE in both shale rocks as well as in extracted shale oil in order to mitigate the risks of their release into the environment. In addition, developers and scientists should consider the losses of industrially significant volumes of valuable metals that occur due to the lack of cost-effective technologies for their capture and extraction from naphthides.


2019 ◽  
Author(s):  
Ramiro Oswaldo Vasquez Bautista ◽  
Ali Baqir Al Lawati ◽  
Mohammad Reza Heidari Varnamkhasti ◽  
Aktham Ali Al Riyami ◽  
Mahmood Al Kendi ◽  
...  

2015 ◽  
Vol 282 (1803) ◽  
pp. 20142782 ◽  
Author(s):  
Martina Prazeres ◽  
Sven Uthicke ◽  
John M. Pandolfi

Large benthic foraminifera are significant contributors to sediment formation on coral reefs, yet they are vulnerable to ocean acidification. Here, we assessed the biochemical and morphological impacts of acidification on the calcification of Amphistegina lessonii and Marginopora vertebralis exposed to different pH conditions. We measured growth rates (surface area and buoyant weight) and Ca-ATPase and Mg-ATPase activities and calculated shell density using micro-computer tomography images. In A. lessonii , we detected a significant decrease in buoyant weight, a reduction in the density of inner skeletal chambers, and an increase of Ca-ATPase and Mg-ATPase activities at pH 7.6 when compared with ambient conditions of pH 8.1. By contrast, M. vertebralis showed an inhibition in Mg-ATPase activity under lowered pH, with growth rate and skeletal density remaining constant. While M. vertebralis is considered to be more sensitive than A. lessonii owing to its high-Mg-calcite skeleton, it appears to be less affected by changes in pH, based on the parameters assessed in this study. We suggest difference in biochemical pathways of calcification as the main factor influencing response to changes in pH levels, and that A. lessonii and M. vertebralis have the ability to regulate biochemical functions to cope with short-term increases in acidity.


2008 ◽  
Vol 11 (06) ◽  
pp. 1071-1081 ◽  
Author(s):  
Amy Whitaker ◽  
C. Shah Kabir ◽  
Wayne Narr

Summary The extent to which fractures affect fluid pathways is a vital component of understanding and modeling fluid flow in any reservoir. We examined the Wafra Ratawi grainstone for which production extending for 50 years, including recent horizontal drilling, has provided some clues about fractures, but their exact locations, intensity, and overall effect have been elusive. In this study, we find that a limited number of total fractures affect production characteristics of the Ratawi reservoir. Although fractures occur throughout the Wafra field, fracture-influenced reservoir behavior is confined to the periphery of the field where the matrix permeability is low. This work suggests that for the largest part of the field, explicit fractures are not necessary in the next-generation Earth and flow-simulation models. The geologic fracture assessment included seismic fault mapping and fracture interpretation of image logs and cores. Fracture trends are in the northeast and southwest quadrants, and fractures are mineralized toward the south and west of the field. Pressure-falloff tests on some peripheral injectors indicate partial barriers, and most of these wells lie on seismic-scale faults in the reservoir, suggesting partial sealing. A few wells show fractured-reservoir production characteristics, and rate-transient analysis on a few producers indicates localized dual-porosity behavior. Producers proximal to dual-porosity wells display single-porosity behavior, however, to attest to the notion of localized fracture response. The spatially restricted fracture-flow characteristics appear to correlate with fracture or vug zones in a low-permeability reservoir. Presence of fracture-flow behavior was tested by constructing the so-called flow-capacity index (FCI), the ratio of khwell (well test-derived value) to khmatrix (core-derived property). Data from 80 wells showed khmatrix to be consistently higher than khwell, a relationship that suggests insignificant fracture production in these wells. Introduction The Wafra field is in the Partitioned Neutral Zone (PNZ) between Kuwait and Saudi Arabia, as shown in Fig. 1. The field has been producing since the 1950s and has seen renewed drilling activity since the late 1990s, including horizontal drilling and implementation of peripheral water injection (Davis and Habib 1999). The Lower Cretaceous Ratawi formation contains the most reserves of the producing intervals at Wafra. The Ratawi oolite (a misnomer--it is a grainstone) reservoir has variable porosity (5 to 35%) and permeability that ranges from tens to hundreds of md (Longacre and Ginger 1988). The main Wafra structure is a gentle (i.e., interlimb angle >170°), doubly plunging anticline trending north-northwest to south-southeast, which culminates near its northern end. The East Wafra spur is a north-trending branch that extends from the center of the main Wafra structure. As seen in Fig. 1, relief on the Main Wafra structure exceeds that on East Wafra. The Ratawi oolite in the Wafra field has been studied at length, and various authors have reported geologic and engineering elements, leading to reservoir characterization and understanding of reservoir performance. Geologic studies are those of Waite et al. (2000) and Sibley et al. (1997). In contrast, Davis and Habib (1999) presented implementation of peripheral water injection, whereas Chawathé et al. (2006) discussed realignment of injection pattern owing to lack of pressure support in the reservoir interior. Previous studies considered the reservoir to behave like a single-porosity system. But recent image-log fracture interpretations indicate high fracture densities, suggesting that the implementation of a dual-porosity model may be necessary because the high impact of fractures during field development has been recognized in some Middle East reservoirs for more than 50 years (Daniel 1954). Static and dynamic data are required to characterize fracture reservoir behavior accurately (Narr et al. 2006). Geologic description of the fracture system, by use of cores, borehole images, seismic data, and well logs, does not in itself determine whether fractures affect reservoir behavior. While seismic and some image logs were available to locate fractures in the Wafra Ratawi reservoir, no dynamic testing with the specific objective of understanding fracture impact has occurred. So, to determine whether fractures influence oil productivity significantly, we used diagnostic analyses of production data and well tests of available injectors. The assessment of fracture effects in the Ratawi reservoir will be used to guide the next generation of geologic and flow-simulation models. Dynamic data involving pressure and rate have the potential to reveal the influence of open fractures in production performance. Unfortunately, pressure-transient testing on single wells does not always provide conclusive evidence about the presence of fractures with the characteristic dual-porosity dip on the pressure-derivative signature (Bourdet et al. 1989). That is because a correct mixture of matrix/fracture storativity must be present for the characteristic signature to appear (Serra et al. 1983). In practice, interference testing (Beliveau 1989) between wells appears to provide more-definitive clues about interwell connectivity, leading to inference about fractures. In contrast to pressure-transient testing, rate-transient analysis offers the potential to provide the same information without dedicated testing. In this field, all wells are currently on submersible pumps. Consequently, the pump-intake pressure and measured rate provided the necessary data for pressure/rate convolution or rate-transient analysis. We provide the Ratawi-reservoir case study primarily as an example of the integration of diverse geologic and engineering data to develop an assessment of fracture influence on reservoir behavior. It illustrates the use of production-data diagnostic tests to determine fracture influence in the absence of targeted fracture-analysis testing. The workflow can be applied to similar static/dynamic problems, such as fault-transmissivity determination. Secondly, this analysis illustrates the process of deciding that fractures, although present throughout the reservoir, may not lead to widespread fractured-reservoir characteristics (e.g., Allan and Sun 2003).


2016 ◽  
Author(s):  
Maurice Edwards ◽  
Rattana Watcharanantakul ◽  
Farid Saifuddin ◽  
Mukminin Yusuf ◽  
I Nengah Nuada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document