scholarly journals Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera

2015 ◽  
Vol 282 (1803) ◽  
pp. 20142782 ◽  
Author(s):  
Martina Prazeres ◽  
Sven Uthicke ◽  
John M. Pandolfi

Large benthic foraminifera are significant contributors to sediment formation on coral reefs, yet they are vulnerable to ocean acidification. Here, we assessed the biochemical and morphological impacts of acidification on the calcification of Amphistegina lessonii and Marginopora vertebralis exposed to different pH conditions. We measured growth rates (surface area and buoyant weight) and Ca-ATPase and Mg-ATPase activities and calculated shell density using micro-computer tomography images. In A. lessonii , we detected a significant decrease in buoyant weight, a reduction in the density of inner skeletal chambers, and an increase of Ca-ATPase and Mg-ATPase activities at pH 7.6 when compared with ambient conditions of pH 8.1. By contrast, M. vertebralis showed an inhibition in Mg-ATPase activity under lowered pH, with growth rate and skeletal density remaining constant. While M. vertebralis is considered to be more sensitive than A. lessonii owing to its high-Mg-calcite skeleton, it appears to be less affected by changes in pH, based on the parameters assessed in this study. We suggest difference in biochemical pathways of calcification as the main factor influencing response to changes in pH levels, and that A. lessonii and M. vertebralis have the ability to regulate biochemical functions to cope with short-term increases in acidity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Azumi Kuroyanagi ◽  
Takahiro Irie ◽  
Shunichi Kinoshita ◽  
Hodaka Kawahata ◽  
Atsushi Suzuki ◽  
...  

AbstractRapid increases in anthropogenic atmospheric CO2 partial pressure have led to a decrease in the pH of seawater. Calcifying organisms generally respond negatively to ocean acidification. Foraminifera are one of the major carbonate producers in the ocean; however, whether calcification reduction by ocean acidification affects either foraminiferal shell volume or density, or both, has yet to be investigated. In this study, we cultured asexually reproducing specimens of Amphisorus kudakajimensis, a dinoflagellate endosymbiont-bearing large benthic foraminifera (LBF), under different pH conditions (pH 7.7–8.3, NBS scale). The results suggest that changes in seawater pH would affect not only the quantity (i.e., shell volume) but also the quality (i.e., shell density) of foraminiferal calcification. We proposed that pH and temperature affect these growth parameters differently because (1) they have differences in the contribution to the calcification process (e.g., Ca2+-ATPase and Ω) and (2) pH mainly affects calcification and temperature mainly affects photosynthesis. Our findings also suggest that, under the IPCC RCP8.5 scenario, both ocean acidification and warming will have a significant impact on reef foraminiferal carbonate production by the end of this century, even in the tropics.


2018 ◽  
Vol 15 (22) ◽  
pp. 6819-6832 ◽  
Author(s):  
Ana Martinez ◽  
Laura Hernández-Terrones ◽  
Mario Rebolledo-Vieyra ◽  
Adina Paytan

Abstract. Increasing atmospheric carbon dioxide and its dissolution in seawater have reduced ocean pH and carbonate ion concentrations, with potential implications on calcifying organisms. To assess the response of large Caribbean benthic foraminifera to low carbonate saturation conditions, we analyzed benthic foraminifers' abundance and relative distribution in surface sediments in proximity to low-carbonate-saturation submarine springs and at adjacent control sites. Our results show that the total abundance of large benthic foraminifera was significantly lower at the low-pH submarine springs than at control sites, although responses were species specific. The relative abundance of high-magnesium, porcelaneous foraminifera was higher than that of hyaline foraminifera at the low-pH springs due to the abundant Archaias angulatus, a chlorophyte-bearing foraminifer, which secretes a large and robust test that is more resilient to dissolution at low-calcite saturation. The different assemblages found at the submarine springs indicate that calcareous symbiont-barren foraminifera are more sensitive to the effects of ocean acidification than agglutinated and symbiont-bearing foraminifera, suggesting that future ocean acidification will likely impact natural benthic foraminifera populations.


Sedimentology ◽  
2021 ◽  
Author(s):  
Gita R. Narayan ◽  
Claire E. Reymond ◽  
Marleen Stuhr ◽  
Steve Doo ◽  
Christiane Schmidt ◽  
...  

2019 ◽  
Author(s):  
Emma Timmins-Schiffman ◽  
José M. Guzmán ◽  
Rhonda Elliott ◽  
Brent Vadopalas ◽  
Steven B. Roberts

AbstractPacific geoduck clams (Panopea generosa) are found along the Northeast Pacific coast where they are significant components of coastal and estuarine ecosystems and the basis of a growing and highly profitable aquaculture industry. The Pacific coastline, however, is also the sight of rapidly changing ocean habitat, including significant reductions in pH. The impacts of ocean acidification on invertebrate bivalve larvae have been widely documented and it is well established that many species experience growth and developmental deficiencies when exposed to low pH. As a native of environments that have historically lower pH than the open ocean, it is possible that geoduck larvae are less impacted by these effects than other species. Over two weeks in larval development (days 6-19 post-fertilization) geoduck larvae were reared at pH 7.5 or 7.1 in a commercial shellfish hatchery. Larvae were sampled at six time points throughout the period for a in-depth proteomics analysis of developmental molecular physiology. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development. Competency for settlement was also delayed in larvae from the low pH conditions. A comparison of proteomic profiles over the course of development reveal that these differing phenotypic outcomes are likely due to environmental disruptions to the timing of molecular physiological events as suites of proteins showed differing profiles of abundance between the two pH environments. Ocean acidification likely caused an energetic stress on the larvae at pH 7.1, causing a shift in physiological prioritization with resulting loss of fitness.


2020 ◽  
Vol 67 (4) ◽  
Author(s):  
V.S. Jayasree ◽  
K. S. Sobhana ◽  
Priyanka Poulose ◽  
Keerthi R. Babu ◽  
S. Jasmine ◽  
...  

A halophilic bacterial strain T14 isolated from the mucus of coral Acropora sp. was found to be highly effective in degrading the pyrethroid pesticide, cyfluthrin. T14 was identified as Photobacterium ganghwense (GenBank Accession No. MT360254) based on phenotypic and biochemical characteristics as well as by 16S rRNA gene sequence analysis. The pyrethroid degrading efficiency of P. ganghwense T14 strain was examined under different culture conditions. It was observed that P. ganghwense T14 was able to utilise cyfluthrin as a sole carbon source and was found to grow on mineral medium with pesticide concentrations ranging from 10 to 100 mg l-1. Optimal temperature and pH conditions for efficient cyfluthrin degradation by P. ganghwense T14 were determined as 30° C and 8 respectively. Degradation of cyfluthrin by P. ganghwense T14 was quantitated by gas chromatography-tandem mass spectrometry (GC-MS/MS). Mineral medium supplemented with 100 mg l-1 cyfluthrin and inoculated with P. ganghwense T14 (106 cells ml-1) recorded 92.13% pesticide decomposition within 120 h. Cytotoxicity assay on a fish cell line EM4SpEx derived from the grouper Epinephelus malabaricus, revealed a drastic reduction in cyfluthrin toxicity as evidenced by reduction in the intensity of cell destruction as well as morphological changes when exposed to P. ganghwense T14 treated filtrate, in comparison with that of parent cyfluthrin filtrate. Results of the study clearly indicated potential bioremediative use of P. ganghwense T14 in cyfluthrin contaminated sites.


2018 ◽  
Author(s):  
Facheng Ye ◽  
Hana Jurikova ◽  
Lucia Angiolini ◽  
Uwe Brand ◽  
Gaia Crippa ◽  
...  

Abstract. Throughout the last few decades and in the near future CO2–induced ocean acidification is potentially a big threat to marine calcite-shelled animals (e.g., brachiopods, bivalves, corals and gastropods). Despite the great number of studies focusing on the effects of acidification on shell growth, metabolism, shell dissolution and shell repair, the consequences on biomineral formation remain poorly understood, and only few studies addressed contemporarily the impact of acidification on shell microstructure and geochemistry. In this study, a detailed microstructure and stable isotope geochemistry investigation was performed on nine adult brachiopod specimens of Magellania venosa (Dixon, 1789), grown in the natural environment as well as in controlled culturing experiments at different pH conditions (ranging 7.35 to 8.15 ± 0.05) over different time intervals (214 to 335 days). Details of shell microstructural features, such as thickness of the primary layer, density and size of endopunctae and morphology of the basic structural unit of the secondary layer were analysed using scanning electron microscopy (SEM). Stable isotope compositions (δ13C and δ18O) were tested from the secondary shell layer along shell ontogenetic increments in both dorsal and ventral valves. Based on our comprehensive dataset, we observed that, under low pH conditions, M. venosa produced a more organic-rich shell with higher density of and larger endopunctae, and smaller secondary layer fibres, when subjected to about one year of culturing. Also, increasingly negative δ13C and δ18O values are recorded by the shell produced during culturing and are related to the CO2–source in the culture setup. Both the microstructural changes and the stable isotope results are similar to observations on brachiopods from the fossil record and strongly support the value of brachiopods as robust archives of proxies for studying ocean acidification events in the geologic past.


2018 ◽  
Vol 14 (7) ◽  
pp. 20180371 ◽  
Author(s):  
Maggie D. Johnson ◽  
Robert C. Carpenter

Ocean acidification (OA) and nutrient enrichment threaten the persistence of near shore ecosystems, yet little is known about their combined effects on marine organisms. Here, we show that a threefold increase in nitrogen concentrations, simulating enrichment due to coastal eutrophication or consumer excretions, offset the direct negative effects of near-future OA on calcification and photophysiology of the reef-building crustose coralline alga, Porolithon onkodes . Projected near-future pCO 2 levels (approx. 850 µatm) decreased calcification by 30% relative to ambient conditions. Conversely, nitrogen enrichment (nitrate + nitrite and ammonium) increased calcification by 90–130% in ambient and high pCO 2 treatments, respectively. pCO 2 and nitrogen enrichment interactively affected instantaneous photophysiology, with highest relative electron transport rates under high pCO 2 and high nitrogen. Nitrogen enrichment alone increased concentrations of the photosynthetic pigments chlorophyll a , phycocyanin and phycoerythrin by approximately 80–450%, regardless of pCO 2 . These results demonstrate that nutrient enrichment can mediate direct organismal responses to OA. In natural systems, however, such direct benefits may be counteracted by simultaneous increases in negative indirect effects, such as heightened competition. Experiments exploring the effects of multiple stressors are increasingly becoming important for improving our ability to understand the ramifications of local and global change stressors in near shore ecosystems.


2021 ◽  
Author(s):  
Laurie Charrieau ◽  
Katsunori Kimoto ◽  
Delphine Dissard ◽  
Beatrice Below ◽  
Kazuhiko Fujita ◽  
...  

<p>Ocean acidification is a consequence of current anthropogenic climate changes. The concomitant decrease in pH and carbonate ion concentration in sea water may have severe impacts on calcifying organisms. Coral reefs are among the first ecosystems recognized vulnerable to ocean acidification. Within coral reefs, large benthic foraminifera (LBF) are major calcium carbonate producers.</p><p>The aim of this study was to evaluate the effects of varying pH on survival and calcification of the symbiont-bearing LBF species <em>Peneroplis</em> spp. We performed culture experiments to study their resistance to ocean acidification conditions, as well as their resilience once placed back under open ocean pH (7.9).</p><p>After three days, small signs of test decalcification were observed on specimens kept at pH 7.4, and severe test decalcification was observed on specimens kept at pH 6.9, with the inner organic lining clearly appearing. After 32 days under pH 7.4, similar strongly decalcified specimens were observed. All the specimens were alive at the end of the experiment. This result demonstrates the resistance of <em>Peneroplis </em>spp. to an acidified pH, at least on a short period of time.</p><p>After being partially decalcified, some of the living specimens were placed back at pH 7.9. After one month, the majority of the specimens showed recalcification features, mostly by addition of new chambers. The trace elements concentrations of the newly formed chambers were analysed by LA-ICPMS. Interestingly, more chambers were added when food was given, which highlights the crucial role of energy source in the recalcification process. Moreover, the newly formed chambers were most of the time abnormal, and the general structure of the tests was altered, with potential impacts on reproduction and in situ survival. In conclusion, if symbiont-bearing LBF show some resistance and resilience to lowered pH conditions, they will remain strongly affected by ocean acidification.</p>


Sign in / Sign up

Export Citation Format

Share Document