Importance of Condition and Performance Monitoring to Maximize Subsea Production System Availability

Author(s):  
Leong Pei Chze
2021 ◽  
Author(s):  
Matteo Mattioli ◽  
Annamaria Di Padova

Abstract The challenge in the Oil&Gas industry to remain competitive in a low oil price whilst dealing with minimization of operational risk and uptime asset maximization is leading offshore Companies to evolve thought proactive and predictive maintenance approaches. In the event of unplanned intervention due to anomalies or warning messages at the dispatching center, the decision on the size of the support vessel and its utilization for straordinary maintenance could be time consuming with potential high cost impact, also due to loss of production. Even the new generation of remote condition and monitoring systems, which allow to improve the capability of operators for early warnings and surveillance, provide a reliable solution for emergencies. In this context, resident subsea drones enable on-demand inspection whilst eliminating the need for support vessel and allow operator to manage the risk in continued operations also for dangerous areas restricted to human access. A case study relevant to a new subsea field development have been conducted. Distinctive Reliability, Availability and Maintainability (RAM) analyses have been performed with the aim to get insight on the subsea production system availability considering a resident drone and to demonstrate how the so called "stategic maintainability" can be applied successfully in the decision-making process while reducing the OPEX. The former related to conventional IMR (Inspection, Maintenance & Repair) based on Condition Based and RBI, Risk Based Inspection approach, the latter related to strategic maintenability with resident drones. The application of such analysis required a multi-disciplinary approach together with the possibility of processing historical data in operating conditions. Historical data sources (e.g. OREDA dataset) were collected to obtain failure rates and active repair times typical of subsea equipment. Direct experience gained in over forty years of inspection and maintenance activities together with recent developments on subsea resident robotics allow the understanding of real internvention timing. Results show that resident subsea drones applied for early inspection and light intervention are confirmed timely and costless solution respect to conventional IMR services. They represent the first aid for environmental surveillance and subsea inspection in case of emergency and provide a relevant saving of subsea production un-availability. The economic value emerged from the presented case study represents a step change for OPEX optimization and motivates Best-in-Class Operators to get an insight case-by-case for both green and aging fields.


2015 ◽  
Vol 31 (4) ◽  
pp. 417-430
Author(s):  
Brett Considine ◽  
John Peter Krahel ◽  
Margarita M. Lenk ◽  
Diane J. Janvrin

ABSTRACT Seven short cases highlight the need for organizational control of the use of social technology. Executives now consider the management of social technology strategies and risks to be their fourth highest priority, investing significant resources to develop effective social technology use policies (Carrick et al. 2013; Deloitte 2012; Feltham and Nichol 2012). Moreover, organizations vary their social technology investment choices depending on their objectives and their target audiences (AICPA 2013; Gallaugher and Ransbotham 2010; Kaplan and Haenlein 2010). A wide variety of case learning objectives involve applying internal control models, and developing and justifying opinions about how social technology uses and abuses affect operational, financial reporting and regulatory compliance objectives, risks, controls, and performance-monitoring activities. Instructors may utilize one or more of these cases at a time, either individually or in student groups, and in undergraduate or graduate financial accounting, accounting information systems, governance, or auditing courses.


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Gas turbine simple or combined cycle plants are built and operated with higher availability, reliability, and performance in order to provide the customer with sufficient operating revenues and reduced fuel costs meanwhile enhancing customer dispatch competitiveness. A tremendous amount of operational data is usually collected from the everyday operation of a power plant. It has become an increasingly important but challenging issue about how to turn this data into knowledge and further solutions via developing advanced state-of-the-art analytics. This paper presents an integrated system and methodology to pursue this purpose by automating multi-level, multi-paradigm, multi-facet performance monitoring and anomaly detection for heavy duty gas turbines. The system provides an intelligent platform to drive site-specific performance improvements, mitigate outage risk, rationalize operational pattern, and enhance maintenance schedule and service offerings via taking appropriate proactive actions. In addition, the paper also presents the components in the system, including data sensing, hardware, and operational anomaly detection, expertise proactive act of company, site specific degradation assessment, and water wash effectiveness monitoring and analytics. As demonstrated in two examples, this remote performance monitoring aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive value for customers including lowering operating fuel cost and increasing customer power sales and life cycle value.


2021 ◽  
pp. 109072
Author(s):  
Yi Wang ◽  
Qi Wang ◽  
Aixia Zhang ◽  
Weiwei Qiu ◽  
Menglan Duan ◽  
...  

2021 ◽  
Author(s):  
Joseph Rizzo Cascio ◽  
Antonio Da Silva ◽  
Martino Ghetti ◽  
Martino Corti ◽  
Marco Montini

Abstract Objectives/Scope The benefits of real-time estimation of the cool down time of Subsea Production System (SPS) to prevent formation of hydrates are shown on a real oil and gas facility. The innovative tool developed is based on an integrated approach, which embeds a proxy model of SPS and hydrate curves, exploiting real-time field data from the Eni Digital Oil Field (eDOF, an OSIsoft PI based application developed and managed by Eni) to continuously estimate the cool down time before hydrates are formed during the shutdown. Methods, Procedures, Process The Asset value optimization and the Asset integrity of hydrocarbon production systems are complex and multi-disciplinary tasks in the oil and gas industry, due to the high number of variables and their synergy. An accurate physical model of SPS is built and, then, used to develop a proxy model, which integrates hydrate curves at different MeOH concentration, being able to estimate in real time the cool down time of SPS during the shutdown exploiting data from subsea transmitters made available by eDOF in order to prevent formation of hydrates. The tool is also integrated with a user-friendly interface, making all relevant information readily available to the operators on field. Results, Observations, Conclusions The integrated approach provides a continues estimation of cool down time based on real time field data (eDOF) in order to prevent formation of hydrates and activate preservation actions. An accurate physical model of SPS is built on a real business case using Olga software and cool down curves simulated considering different operating shutdown scenarios. Hydrate curves of the considered production fluid are also simulated at different MeOH concentration using PVTsim NOVA software. Off-line simulated curves are then implemented as numerical tables combined with eDOF data by an Eni developed fast executing proxy model to produce estimated cool down time before hydrates are formed. A graphic representation of SPS behavior and its cool down time estimation during shutdown are displayed and ready to use by the operators on field in support of the operations, saving cost and time. Novel/Additive Information The benefits of real time estimation of the cool down time of SPS to prevent hydrates formation are shown in terms of saving of time and cost during the shutdown operations on a real case application. This integrated approach allows to rely on a continue, automatic and acceptably accurate estimate of the available time before hydrates are formed in SPS, including the possibility to be further developed for cases where subsea transmitters are not available or extended to other flow assurance issues.


Sign in / Sign up

Export Citation Format

Share Document