Wettability and Flow Rate Effects on Mass Transfer for Simulation of Fractured Reservoirs

2019 ◽  
Author(s):  
Sharon A. R. Soler
2020 ◽  
Author(s):  
Sharon A. R. Soler ◽  
Luís F. Lamas ◽  
Erika T. Koroishi ◽  
Eddy Ruidiaz ◽  
Osvair Vidal Trevisan ◽  
...  

1986 ◽  
Vol 51 (10) ◽  
pp. 2127-2134 ◽  
Author(s):  
František Potůček ◽  
Jiří Stejskal

Absorption of oxygen into water and aqueous solutions of poly(acrylamides) was studied in an absorber with a wetted sphere. The effects of changes in the liquid flow rate and the polymer concentration on the liquid side mass transfer coefficient were examined. The results are expressed by correlations between dimensionless criteria modified for non-Newtonian liquids whose flow curve can be described by the Ostwald-de Waele model.


1993 ◽  
Vol 7 (2) ◽  
pp. 123-126 ◽  
Author(s):  
I. Leskošek ◽  
M. Mitrović ◽  
V. Nedović

2003 ◽  
Vol 58 (7) ◽  
pp. 1135-1146 ◽  
Author(s):  
Moshe Ben-Tullilah ◽  
Einat Alajem ◽  
Rina Gal ◽  
Moshe Sheintuch
Keyword(s):  

2014 ◽  
Vol 908 ◽  
pp. 277-281
Author(s):  
Fei Wu ◽  
Jie Wu ◽  
Mei Jin ◽  
Fang Wang ◽  
Ping Lu

Based on acetone-H2O system, the influence of the gas-liquid distribution inducer on the mass transfer coefficient in the rotating packed bed with the stainless steel packing was investigated. Furthermore, the absorption performance was also obtained under the experimental condition of the rotational speed of 630 rpm, the gas flow rate of 2 m3/h and the liquid flow rate of 100 L/h in the rotating packed bed with different types and different installation ways of the distribution inducer. The experimental results showed that the volumetric mass transfer coefficient Kyα per unit contact length of gas-liquid was increased by 8.6% for the forward-curved fixed blade, by 19.8% for the backward-curved rotor blade and by 33.2% with the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. Furthermore, when the gas flow rate was 2.5 m3/h, Kyα per unit contact length of gas-liquid was increased by 2.9% for the forward-curved fixed blade, by 25.3% for the backward-curved rotor blade, by 42.7% for the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. The results indicated that the distribution inducer play an important role on the improvement of the mass transfer coefficient in acetone-H2O system.


Konversi ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Erlinda Ningsih ◽  
Abas Sato ◽  
Mochammad Alfan Nafiuddin ◽  
Wisnu Setyo Putranto

Abstract- One of the most widely used processes for CO2 gas removal is Absorption. Carbon dioxide is the result of the fuel combustion process which of the hazardous gases. The aim of this research is to determine the total mass transfer coefficient and analyze the effect of the absorbent flow rate of the absorbent solution with the promoter and the gas flow rate to the total mass transfer coefficient value. The variables consisted of liquid flow rate: 1, 2, 3, 4, 5 liter/min, gas flow rate: 15, 25, 30, 40, 50 liter/min and MSG concentration: 0%, 1%, 3% and 5% by weight. The solution of Pottasium Carbonate as absorbent with MSG promoter is flowed through top column and CO2 gas flowed from bottom packed column. Liquids were analyzed by titration and the gas output was analyzed by GC. From this research, it is found that the flow rate of gas and the liquid flow rate is directly proportional to the value of KGa. The liquid flow rate variable 5 liters / minute, gas flow rate 15 l / min obtained value of KGa 11,1102 at concentration of MSG 5%. Keywords:  Absorption, CO2,  K2CO3, MSG. 


Vestnik MEI ◽  
2021 ◽  
pp. 37-43
Author(s):  
Vasiliy Ya. Gubarev ◽  
◽  
Aleksey G. Arzamastsev ◽  
Aleksey I. Sharapov ◽  
Yuliya O. Moreva ◽  
...  

In the channels of mechanical-draft cooling tower sprinklers, a saturated air flow section may appear under certain initial conditions, the mass transfer intensity in which is limited by the steam content in the saturated air. For correctly calculating the heat and mass transfer processes in the cooling tower channel, it is necessary to have a method for determining the unsaturated air flow section length. Publications devoted to studying water cooling processes in the channels of mechanical-draft cooling tower sprinklers do not contain an assessment of the unsaturated air flow section length. A method for determining the unsaturated humid air flow section length in the mechanical-draft cooling tower sprinkler channels is proposed, which is based on the well-known criterion equations for calculating the heat transfer and mass transfer coefficients. The effect the initial air parameters have on the unsaturated air section length is studied, and graphic dependences of the unsaturated air section length are drawn up for each of the analyzed parameters. It is shown that the unsaturated humid air flow section length increases with increasing the initial air temperature. It is also found that the unsaturated air flow section length decreases with a growth in the relative air humidity. An increase in the air flow rate with a constant water flow rate leads to an increase in the unsaturated air flow section length. For the considered sprinkler channel, the saturated air region exists at an air temperature of 15°C and below, and for air temperatures above 25°C there is no saturated air flow section. It is shown that the conclusions drawn about the effect the initial air parameters have on the relative change in the unsaturated air flow section length are valid for channels of various shapes and geometric sizes. The proposed methodology and the results obtained can be used in designing mechanical-draft cooling towers and estimating their efficiency.


2021 ◽  
Author(s):  
Mehdi Asadollahzadeh ◽  
Rezvan Torkaman ◽  
Meisam Torab-Mostaedi ◽  
Mojtaba Saremi

Abstract The current study focuses on the recovery of zinc ions by solvent extraction in the pulsed contactor. The Zn(II) ions from chloride solution were extracted into the organic phase containing D2EHPA extractant. The resulting data were characterized for the relative amount of (a) pulsed and no-pulsed condition; and (b) flow rate of both phases. Based on the mass balance equations for the column performance description, numerical computations of mass transfer in a disc-donut column were conducted and validated the experimental data for zinc extraction. Four different models, such as plug flow, backflow, axial dispersion, and forward mixing were evaluated in this study. The results showed that the intensification of the process with the pulsed condition increased and achieved higher mass transfer rates. The forward mixing model findings based on the curve fitting approach validated well with the experimental data. The results showed that an increase in pulsation intensity, as well as the phase flow rates, have a positive impact on the performance of the extractor, whereas the enhancement of flow rate led to the reduction of the described model parameters for adverse phase.


Sign in / Sign up

Export Citation Format

Share Document