The Effect of Initial Water Saturation on Enhanced Water Imbibition by Surfactant for Fractured Tight Porous Media

SPE Journal ◽  
2020 ◽  
Author(s):  
Mingyuan Wang ◽  
Francisco J. Argüelles-Vivas ◽  
Gayan A. Abeykoon ◽  
Ryosuke Okuno
2011 ◽  
Vol 680 ◽  
pp. 336-360 ◽  
Author(s):  
KHOSROW NADERI ◽  
TAYFUN BABADAGLI

Although experimental and theoretical studies have been performed to identify the effects of elastic waves on multi-phase flow in porous structures, the literature lacks finely tuned experiments at the micro-scale. This paper reports observations and critical analysis of immiscible displacement in micro-scale porous media under ultrasonic energy. A number of experiments are performed on homogeneous and heterogeneous micromodels for varying wave frequency and power, initial water saturation, wettability and injection rates. We show that ultrasonic radiation influences the displacement pattern and yields lower residual non-wetting phase (oil) behind when low injection rates are applied. Higher wave frequency results in faster recovery of oil, but the ultimate recovery is controlled mainly by wave intensity. The presence of initial water saturation has a positive effect on the displacement, especially in an oil-wet medium. Of the possible mechanisms suggested for recovery enhancement under ultrasonic radiation, deformation of pore walls and change in fluid properties due to heating are not an issue in these experiments but other mechanisms including coalescence of oil droplets under oscillation, reduction of wetting films, adherence to grains and the peristaltic movement of fluids due to mechanical vibration were observed to be effective and are discussed in the analysis of the visual observations.


1999 ◽  
Vol 2 (01) ◽  
pp. 25-36 ◽  
Author(s):  
A.B. Dixit ◽  
S.R. McDougall ◽  
K.S. Sorbie ◽  
J.S. Buckley

Summary The wettability of a crude oil/brine/rock system influences both the form of petrophysical parameters (e.g., Pc and krw/kro) and the structure and distribution of remaining oil after secondary recovery. This latter issue is of central importance for improved oil recovery since it represents the "target" oil for any IOR process. In the present study, we have developed a three-dimensional network model to derive capillary pressure curves from nonuniformly wetted (mixed and fractionally wet) systems. The model initially considers primary drainage and the aging process leading to wettability alterations. This is then followed by simulations of spontaneous water imbibition, forced water drive, spontaneous oil imbibition and forced oil drive—i.e., we consider a complete flooding sequence characteristic of wettability experiments. The model takes into account many pore level flow phenomena such as film flow along wetting phase clusters, trapping of wetting and nonwetting phases by snapoff and bypassing. We also consider realistic variations in advancing and receding contact angles. There is a discussion of the effects of additional parameters such as the fraction of oil-wet pores, mean coordination number and pore size distribution upon fractionally and mixed wet capillary pressure curves. Moreover, we calculate Amott oil and water indices using the simulated curves. Results indicate that oil recovery via water imbibition in weakly water-wet cores can often exceed that obtained from strongly water-wet samples. Such an effect has been observed experimentally in the past. The basic physics governing this enhancement in spontaneous water imbibition can be explained using the concept of a capillarity surface. Based on these theoretical calculations, we propose a general "regime based" theory of wettability classification and analysis. We classify a range of experimentally observed and apparently inconsistent waterflood recovery trends into various regimes, depending upon the structure of the underlying oil- and water-wet pore clusters and the distribution of contact angles. Using this approach, numerous published experimental Amott indices and waterflood data from a variety of core/crude oil/brine systems are analyzed. Introduction In crude oil/brine/rock (COBR) systems, pore level displacements of oil and brine and hence the corresponding petrophysical flow parameters (e.g., Pc and krw/kro) describing these displacements are governed by the pore geometry, topology and wettability of the system. A number of excellent review papers are available that describe experimental investigations of the effect of wettability on capillary pressure and oil-water relative permeability curves.1–5 In COBR systems, wettability alterations depend upon the mineralogical composition of the rock, pH and/or composition of the brine, crude oil composition, initial water saturation, reservoir temperature, etc.6–12 Therefore, in recent years, interest in restoring the wettability of reservoir core using crude oil and formation brine has greatly increased.3,4,13,14 In this approach, cleaned reservoir core is first saturated with brine and then oil flooded to initial water saturation using crude oil. The core containing crude oil and brine is then aged to alter its wettability state. Wettability measurements, such as Amott and USBM tests, and waterflood experiments are then typically conducted on the aged core. This entire process broadly mimics the actual flow sequences in the reservoir; consequently, the wettability alterations are more realistic than those achieved using chemical treatment methods. During the aging process, wettability may be altered to vastly different degrees depending upon many factors, including those mentioned above. In addition, aging time, thickness of existing water films and wetting film disjoining pressure isotherms also play important roles. Hence, the final wettability state of a re-conditioned core will generally be case specific.


2006 ◽  
Vol 9 (04) ◽  
pp. 295-301 ◽  
Author(s):  
Kewen Li ◽  
Kevin Chow ◽  
Roland N. Horne

Summary It has been a challenge to understand why recovery by spontaneous imbibition could both increase and decrease with initial water saturation. To this end, mathematical models were developed with porosity, permeability, viscosity, relative permeability, capillary pressure, and initial water saturation included. These equations foresee that recovery and imbibition rate can increase, remain unchanged, or decrease with an increase in initial water saturation, depending on rock properties, the quantity of residual gas saturation, the range of initial water saturation, and the units used in the definitions of gas recovery and imbibition rate. The theoretical predictions were verified experimentally by conducting spontaneous water imbibition at five different initial water saturations, ranging from 0 to approximately 50%. The effects of initial water saturation on residual saturation, relative permeability, capillary pressure, imbibition rate, and recovery in gas/water/rock systems by cocurrent spontaneous imbibition were investigated both theoretically and experimentally. Water-phase relative permeabilities and capillary pressures were calculated with the experimental data of spontaneous imbibition. Experimental results in different rocks were compared. Introduction Spontaneous water imbibition is an important mechanism during water injection. Prediction of recovery and imbibition rate by spontaneous water imbibition is essential to evaluate the feasibility and the performance of water injection. For example, is water injection effective in the case of high initial water saturation in reservoirs? Answers to such a question may be found by investigating the effect of initial water saturation on spontaneous water imbibition. It has been observed experimentally that initial water saturation affects recovery and production rate significantly (Blair 1964; Zhou et al. 2000; Viksund et al. 1998; Cil et al. 1998; Tong et al. 2001; Li and Firoozabadi 2000; Akin et al. 2000). However, the experimental observations from different authors (Zhou et al. 2000; Cil et al. 1998; Li and Firoozabadi 2000; Akin et al. 2000) are not consistent. On the other hand, few studies have investigated the effect of initial water saturation on recovery and imbibition rate theoretically, especially in gas reservoirs. Using numerical-simulation techniques, Blair (1964) found that the quantity and the rate of oil produced after a given period of imbibition increased with a decrease in initial water saturation for countercurrent spontaneous imbibition. Zhou et al. (2000) found that both imbibition rate and final oil recovery in terms of oil originally in place (OOIP) increased with an increase in initial water saturation, whereas oil recovery by waterflooding decreased. Viksund et al. (1998) found that the final oil recovery (OOIP) by spontaneous water imbibition in Berea sandstone showed little variation with a change in initial water saturation from 0 to approximately 30%. For the chalk samples tested by Viksund et al. (1998), the imbibition rate first increased with an increase in initial water saturation and then decreased slightly as initial water saturation increased above 34%.Cil et al. (1998) reported that the oil recovery (in terms of recoverable oil reserves) for zero and 20% initial water saturation showed insignificant differences in behavior. However, the oil recovery for initial water saturation above 20% increased with an increase in initial water saturation. Li and Firoozabadi (2000) found that the final gas recovery in the units of gas originally in place (GOIP) by spontaneous imbibition decreased with an increase in initial water saturation in both gas/oil/rock and gas/water/rock systems. The imbibition rate (GOIP/min) increased with an increase in initial water saturation at early time but decreased at later time. Akin et al. (2000) found that the residual oil saturation was unaffected significantly by initial water saturation. In this study, equations, derived theoretically, were used to study the effect of initial water saturation on gas recovery and imbibition rate. The equations correlate recovery, imbibition rate, initial water saturation, rock/fluid properties, and other parameters. Experiments of spontaneous water imbibition in gas-saturated rocks were conducted to confirm the theoretical predictions. The effect of rock properties on gas recovery and imbibition rate was also studied. An X-ray CT scanner was used to monitor the distribution of the initial water saturation to confirm that the initial distribution of the water saturation was uniform. In this study, we only focused on cocurrent spontaneous imbibition. It was assumed that there were no chemical reactions or mass transfer between gas and liquid.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Olugbenga Falode ◽  
Edo Manuel

An understanding of the mechanisms by which oil is displaced from porous media requires the knowledge of the role of wettability and capillary forces in the displacement process. The determination of representative capillary pressure (Pc) data and wettability index of a reservoir rock is needed for the prediction of the fluids distribution in the reservoir: the initial water saturation and the volume of reserves. This study shows how wettability alteration of an initially water-wet reservoir rock to oil-wet affects the properties that govern multiphase flow in porous media, that is, capillary pressure, relative permeability, and irreducible saturation. Initial water-wet reservoir core samples with porosities ranging from 23 to 33%, absolute air permeability of 50 to 233 md, and initial brine saturation of 63 to 87% were first tested as water-wet samples under air-brine system. This yielded irreducible wetting phase saturation of 19 to 21%. The samples were later tested after modifying their wettability to oil-wet using a surfactant obtained from glycerophtalic paint; and the results yielded irreducible wetting phase saturation of 25 to 34%. From the results of these experiments, changing the wettability of the samples to oil-wet improved the recovery of the wetting phase.


2019 ◽  
Author(s):  
Chem Int

Traditionally, carbon dioxide (CO2) injection has been considered an inefficient method for enhancing oil recovery from naturally fractured reservoirs. Obviously, it would be useful to experimentally investigate the efficiency of waterflooding naturally fractured reservoirs followed by carbon dioxide (CO2) injection. This issue was investigated by performing water imbibition followed by CO2 gravity drainage experiments on artificially fractured cores at reservoir conditions. The experiments were designed to illustrate the actual process of waterflooding and CO2 gravity drainage in a naturally fractured reservoir in the Brass Area, Bayelsa. The results demonstrate that CO2 gravity drainage could significantly increase oil recovery after a waterflood. During the experiments, the effects of different parameters such as permeability, initial water saturation and injection scheme was also examined. It was found that the efficiency of the CO2 gravity drainage decrease as the rock permeability decreases and the initial water saturation increases. Cyclic CO2 injection helped to improve oil recovery during the CO2 gravity drainage process which alters the water imbibition. Oil samples produced in the experiment were analyzed using gas chromatography to determine the mechanism of CO2-improved oil production from tight matrix blocks. The results show that lighter components are extracted and produced early in the test. The results of these experiments validate the premises that CO2 could be used to recover oil from a tight and unconfined matrix efficiently.


1964 ◽  
Vol 4 (03) ◽  
pp. 195-202 ◽  
Author(s):  
P.M. Blair

Abstract This paper presents numerical solutions of the equations describing the imbibition of water and the countercurrent flow of oil in porous rocks. The imbibition process is of practical importance in recovering oil from heterogeneous formations and has been studied principally by experimental means. Calculations were made for imbibition of water into both linear and radial systems. Imbibition in the linear systems was allowed to take place through one open, or permeable, face of the porous medium studied. In the radial system, water was imbibed inward from the outer radius. The effects on rate of imbibition of varying the capillary pressure and relative permeability curves, oil viscosity and the initial water saturation were computed. For each case studied, the rate of water imbibition and the saturation and pressure profiles were calculated as functions of time. The results of these calculations indicate that, for the porous medium studied, the time required to imbibe a fixed volume of water of a certain viscosity is approximately proportional to the square root of the viscosity of the reservoir oil whenever the oil viscosity is greater than the water viscosity. Results are also presented illustrating the effects on rate of imbibition of the other variables studied. Introduction The process of imbibition, or spontaneous flow of fluids in porous media under the influence of capillary pressure gradient s, occurs wherever there exist in permeable rock capillary pressure gradients which are not exactly balanced by opposing pressure gradients (such as those resulting from the influence of gravity). The importance of such capillary movement in the displacement of oil by water or gas was recognized in early investigations and described by Leverett, Lewis and True in 1942. Methods advanced by these authors for studying the process using dynamically scaled models were rendered more general and flexible by the research of later workers. The influence of capillary forces in laboratory water floods has also been discussed by several authors. While imbibition plays a very important role in the recovery of oil from normal reservoirs, Brownscombe and Dyes pointed out that imbibition might be the dominant displacement process in water flooding reservoirs characterized by drastic variations in permeability, such as in fractured- matrix reservoirs. In water-wet, fractured-matrix reservoirs, water will be imbibed from fractures into the matrix with a countercurrent expulsion of oil into the fractures. If the imbibition occurs at a sufficiently rapid rate, a very successful water flood can result; if the imbibition proceeds slowly the project might not be economically attractive. Scaled-model studies have demonstrated the vital importance of imbibition in secondary recovery in fractured reservoirs. It is therefore important in the evaluation of waterflooding prospects to develop a thorough understanding of the quantitative relationships of the factors which control the rapidity of capillary imbibition. The imbibition process serves reservoir engineers in still another important way by providing a technique for studying the wettability of reservoir core samples. Such experiments are usually conducted by observing the rate of expulsion of oil or water from core samples submerged in the appropriate fluid. Several papers have been published on the experimental techniques involved. Although Handy has recently published a method for calculating capillary pressures from experiments with gas-saturated cores, it has not yet been possible to deduce quantitative information regarding water-oil relative permeability and capillary pressure characteristics of the rock from the experimental results. Thus a technique is needed for studying the quantitative dependence of imbibition rate on oil and water viscosity, initial water saturation, relative permeability-saturation, and capillary pressure-saturation relations. The development of such information, including saturation and pressure profiles by laboratory experiments, would be very difficult. SPEJ P. 195ˆ


Fuel ◽  
2020 ◽  
Vol 276 ◽  
pp. 118031 ◽  
Author(s):  
Francisco J. Argüelles-Vivas ◽  
Mingyuan Wang ◽  
Gayan A. Abeykoon ◽  
Ryosuke Okuno

Sign in / Sign up

Export Citation Format

Share Document