Fluid Mapping-While-Drilling De-Risks Reservoir and Fluid Data Acquisition Workflow in a Brown Field

2021 ◽  
Author(s):  
Norsharmila Abdul Wahab ◽  
Muhammad Haniff Suhaimi ◽  
Aryanore Nafarine Antuni ◽  
W Nor Afiqah W Aziz ◽  
Muhammad Zaki Mohiyaddin ◽  
...  

Abstract Located offshore Malaysia, Field A is a highly complex elongated anticlinal structure with hundreds of faults. It includes over 70 hydrocarbon bearing sands deposited in a lower coastal plain environment. Producing since the late 1970s, Field A has gone through several asset rejuvenation plans. The latest one aimed at appraising and draining several untapped fault blocks. Although no major surprises were expected in terms of lithologies, uncertainties remained on fluids’ nature in multiple sands and on the possible isolation of the fault blocks. This paper illustrates how an operating company introduced a new while-drilling downhole formation fluid data acquisition workflow to successfully de-risk and address these challenges. Conventional formation evaluation is challenging in these fluvial environments, as it includes laminated reservoir, variable permeability, and presence of light, potentially saturated, hydrocarbons. Lessons learned from the previous rejuvenation campaign highlighted the importance of formation testing and downhole fluid analysis (DFA). The planned campaign required drilling two complex 3D profile wells (80-degree tangent followed by 35-degree drop through the targets). Pre-drill discussion raised various concerns: potential well control issues due to pumping light hydrocarbons in the borehole; sticking risk due to complex well trajectory and potential depletion; in-situ evaluation of CO2 for well deliverability analysis; and the number of logging runs, wiper, and post-drilling cleaning trips. In addition, the financial constraints on infill development called for the need of early, real-time enabled decisions for perforation and completion optimization. The selected drilling bottomhole assembly consisted of an integrated multi-physics logging-while-drilling toolstring including fluid mapping-while-drilling (FMWD) technology to de-risk the fluid acquisition program. The integration of pressures and DFA measurements with petrophysical data helped to identify and understand the distribution of fluids and fault blocks connectivity. The campaign proved to be very successful. All sand horizons were pressure tested, providing a fluid pressure profile description yielding gradients where applicable, differential pressure estimation, and connectivity information. The uncertainty associated with petrophysical fluid identification was addressed, and the use of FMWD showed no free gas in the tested zones. Fault block isolation was proven. Reservoir fluid and mobility profiling helped to optimize the well perforation and completion strategy and assess the producibility of the wells. The acquisition sequence was safely performed in one trip from bottom to top with no overpull observed. No wiper or post-drilling cleaning trips were required due to continuous mud circulation during data acquisition. This paper describes how this operating company successfully introduced a new while-drilling downhole formation fluid data acquisition workflow in a brown field. The workflow positively impacted the field development decisions. The FMWD de-risked data gathering operation under tight economical constraints and addressed formation evaluation and drilling and completion challenges during the evaluation of untapped blocks in Field A.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kufre Joseph Okop ◽  
Kathy Murphy ◽  
Estelle Victoria Lambert ◽  
Kiya Kedir ◽  
Hailemichael Getachew ◽  
...  

Abstract Background In sub-Saharan Africa (SSA), which experiences a disproportionately high cardiovascular disease (CVD) burden, population-based screening and prevention measures are hampered by low levels of knowledge about CVD and associated risk factors, and inaccurate perceptions of severity of risk. Methods This protocol describes the planned processes for implementing community-driven participatory research, using a citizen science method to explore CVD risk perceptions and to develop community-specific advocacy and prevention strategies in the rural and urban SSA settings. Multi-disciplinary research teams in four selected African countries will engage with and train community members living in rural and urban communities as citizen scientists to facilitate conceptualization, co-designing of research, data gathering, and co-creation of knowledge that can lead to a shared agenda to support collaborative participation in community-engaged science. The emphasis is on robust community engagement, using mobile technology to support data gathering, participatory learning, and co-creation of knowledge and disease prevention advocacy. Discussion Contextual processes applied and lessons learned in specific settings will support redefining or disassembling boundaries in participatory science to foster effective implementation of sustainable prevention intervention programmes in Low- and Middle-income countries.


10.5772/5694 ◽  
2007 ◽  
Vol 4 (2) ◽  
pp. 24 ◽  
Author(s):  
E. Colon ◽  
G. De Cubber ◽  
H. Ping ◽  
J-C Habumuremyi ◽  
H. Sahli ◽  
...  

This paper summarises the main results of 10 years of research and development in Humanitarian Demining. The Hudem project focuses on mine detection systems and aims at provided different solutions to support the mine detection operations. Robots using different kind of locomotion systems have been designed and tested on dummy minefields. In order to control these robots, software interfaces, control algorithms, visual positioning and terrain following systems have also been developed. Typical data acquisition results obtained during trial campaigns with robots and data acquisition systems are reported. Lessons learned during the project and future work conclude this paper.


2021 ◽  
Author(s):  
Vinicius Gasparetto ◽  
Thierry Hernalsteens ◽  
Joao Francisco Fleck Heck Britto ◽  
Joab Flavio Araujo Leao ◽  
Thiago Duarte Fonseca Dos Santos ◽  
...  

Abstract Buzios is a super-giant ultra-deep-water pre-salt oil and gas field located in the Santos Basin off Brazil's Southeastern coast. There are four production systems already installed in the field. Designed to use flexible pipes to tie back the production and injection wells to the FPSOs (Floating Production Storage and Offloading), these systems have taken advantage from several lessons learned in the previous projects installed by Petrobras in Santos Basin pre-salt areas since 2010. This knowledge, combined with advances in flexible pipe technology, use of long-term contracts and early engagement with suppliers, made it possible to optimize the field development, minimizing the risks and reducing the capital expenditure (CAPEX) initially planned. This paper presents the first four Buzios subsea system developments, highlighting some of the technological achievements applied in the field, as the first wide application of 8" Internal Diameter (ID) flexible production pipes for ultra-deep water, leading to faster ramp-ups and higher production flowrates. It describes how the supply chain strategy provided flexibility to cover the remaining project uncertainties, and reports the optimizations carried out in flexible riser systems and subsea layouts. The flexible risers, usually installed in lazy wave configurations at such water depths, were optimized reducing the total buoyancy necessary. For water injection and service lines, the buoyancy modules were completely removed, and thus the lines were installed in a free-hanging configuration. Riser configuration optimizations promoted a drop of around 25% on total riser CAPEX and allowed the riser anchor position to be placed closer to the floating production unit, promoting opportunities for reducing the subsea tieback lengths. Standardization of pipe specifications and the riser configurations allowed the projects to exchange the lines, increasing flexibility and avoiding riser interference in a scenario with multiple suppliers. Furthermore, Buzios was the first ultra-deep-water project to install a flexible line, riser, and flowline, with fully Controlled Annulus Solution (CAS). This system, developed by TechnipFMC, allows pipe integrity management from the topside, which reduces subsea inspections. As an outcome of the technological improvements and the optimizations applied to the Buzios subsea system, a vast reduction in subsea CAPEX it was achieved, with a swift production ramp-up.


2021 ◽  
Author(s):  
Rahul Kamble ◽  
Youssef Ali Kassem ◽  
Kshudiram Indulkar ◽  
Kieran Price ◽  
Majid Mohammed A. ◽  
...  

Abstract Coring during the development phase of an oil and gas field is very costly; however, the subsurface insights are indispensable for a Field Development Team to study reservoir characterization and well placement strategy in Carbonate formations (Dolomite and limestone with Anhydrite layers). The objective of this case study is to capture the successful coring operation in high angle ERD wells, drilled from the fixed well location on a well pad of an artificial island located offshore in the United Arab Emirates. The well was planned and drilled at the midpoint of the development drilling campaign, which presented a major challenge of wellbore collision risk whilst coring in an already congested area. The final agreed pilot hole profile was designed to pass through two adjacent oil producer wells separated by a geological barrier, however, the actual separation ratio was < 1.6 (acceptable SF to drill the well safely), which could have compromised the planned core interval against the Field Development Team's requirement. To mitigate the collision risks with offset wells during the coring operation, a low flow rate MWD tool was incorporated in the coring BHA to monitor the well path while cutting the core. After taking surveys, IFR and MSA corrections were applied to MWD surveys, which demonstrated an acceptable increase in well separation factor as per company Anti-Collision Risk Policy to continue coring operations without shutting down adjacent wells. A total of 3 runs incorporating the MWD tool in the coring BHA were performed out of a total of 16 runs. The maximum inclination through the coring interval was 73° with medium well departure criteria. The main objective of the pilot hole was data gathering, which included a full suite of open hole logging, seismic and core cut across the target reservoir. A total of 1295 ft of core was recovered in a high angle well across the carbonate formation's different layers, with an average of 99% recovery in each run. These carbonate formations contain between 2-4% H2S and exhibit some fractured layers of rock. To limit and validate the high cost of coring operations in addition to core quality in the development phase, it was necessary to avoid early core jamming in the dolomite, limestone and anhydrite layers, based on previous coring runs in the field. Core jamming leads to early termination of the coring run and results in the loss of a valuable source of information from the cut core column in the barrel. Furthermore, it would have a major impact on coring KPIs, consequently compromising coring and well objectives. Premature core jamming and less-than-planned core recovery from previous cored wells challenged and a motivated the team to review complete field data and lessons learned from cored offset wells. Several coring systems were evaluated and finally, one coring system was accepted based on core quality as being the primary KPI. These lessons learned were used for optimizing certain coring tools technical improvements and procedures, such as core barrel, core head, core handling and surface core processing in addition to the design of drilling fluids and well path. The selection of a 4" core barrel and the improved core head design with optimized blade profile and hold on sharp polished cutters with optimized hydraulic efficiency, in addition to the close monitoring of coring parameters, played a significant role in improving core cutting in fractured carbonate formation layers. This optimization helped the team to successfully complete the 1st high angle coring operation offshore in the United Arab Emirates. This case study shares the value of offset wells data for coring jobs to reduce the risk of core jamming, optimize core recovery and reduce wellbore collision risks. It also details BHA design decisions(4"core barrel, core head, low flow rate MWD tool and appropriate coring parameters), all of which led to a new record of cutting 1295 ft core in a carbonate formation with almost 100% recovery on surface.


2021 ◽  
Author(s):  
Abdullah Abu-Eida ◽  
Salem Al-Sabea ◽  
Milan Patra ◽  
Bader Akbar ◽  
Kutbuddin Bhatia ◽  
...  

Abstract The Minagish field in West Kuwait is a high potential field which poses several challenges in terms of hydrocarbon flow assurance through highly depleted tight carbonate intervals with uneven reservoir quality and curtailed mobility. These conditions have shifted the field development from vertical to horizontal wellbore completions. Achieving complete wellbore coverage is a challenge for any frac treatment performed in a long openhole lateral with disparities in reservoir characteristics. The fluid will flow into the path of least resistance leaving large portions of the formation untreated. As a result, economic fracturing treatment options dwindle significantly, thus reservoir stimulation results are not always optimum. A multistage fracturing technique using Integrated Dynamic Diversion (IDD) has been performed first time in West Kuwait field well. The process uses active fluid energy to divert flow into a specific fracture point in the lateral, which can initiate and precisely place a fracture. The process uses two self-directed fluid streams: one inside the pipe and one in the annulus. The process mixes the two fluids downhole with high energy to form a consistent controllable mixture. The technique includes pinpoint fluid jetting at the point of interest, followed by in-situ HCL based crosslinked systems employed for improving individual stage targets. The IDD diversion shifts the fracture to unstimulated areas to create complex fractures which increases reservoir contact volume and improved overall conductivity in the lateral. The kinetic and chemical diversion of the IDD methodology is highly critical to control fluid loss in depleted intervals and results in enhanced stimulation. Pumping a frac treatment in openhole without control would tend to initiate a longitudinal fracture along the wellbore and may restrict productivity. By using specialized completion tools with nozzles at the end of the treating string, a new pinpoint process has been employed to initiate a transverse fracture plane in IDD applications. Proper candidate selection and fluid combination with in-situ crosslink acid effectively plug the fracture generated previously and generate pressure high enough to initiate another fracture for further ramification. By combining these processes into one continuous operation, the use of wireline/coiled tubing for jetting, plug setting and milling is eliminated, making the new multistage completion technology economical for these depleted wells. The application of the IDD methodology is a fit-for-purpose solution to address the unique challenges of openhole operations, formation technical difficulties, high-stakes economics, and untapped high potential from intermittent reservoirs. The paper will present post-operation results of this completion from all fractured zones along the lateral and will describe the lessons learned in implementation of this methodology which can be considered as best practice for application in similar challenges in other fields.


Author(s):  
Charles-Alexandre Zimmermann ◽  
Guilhem Layrisse ◽  
Daniel de la Cruz ◽  
Jeremy Gordonnat

The BP operated Greater Plutonio field development offshore Angola comprises a spread-moored FPSO in 1,300 m water depth, serving as a hub processing the fluids produced from or injected into the subsea wells. The selected riser system is a Hybrid Riser Tower comprising 11 risers bundled around a central structural tubular (Core Pipe), tensioned by a steel Buoyancy Tank at its top and maintained by an anchor base at its bottom. The Riser Tower is fabricated onshore and then towed to the field for final installation in deepwater near the FPSO. Once the Riser Tower installation is completed the risers are connected to the FPSO by means of flexible jumpers and to the flowlines by means of rigid spools. All fabrication and installation work has been performed by Acergy. This paper presents the studies performed to cover all the steps of the installation phase: build-up of the Orcaflex model, miscellaneous studies to determine model and analyses parameters, towing analysis, upending analysis, Buoyancy Tank ballasting and deballasting analyses, and contingency analyses. This paper is mainly focused on the Riser Tower installation but also covers the installation of the Riser Tower anchor and of the flexible jumpers in order to give a complete overview of the operations related to the Riser Tower system. A comparison between computed data and data measured during operations is also presented to support the overall installation analysis methodology. Lessons learned are provided for future improvement of Riser Tower installation covering main challenges such as Riser Tower modeling, weight/buoyancy repartition along the Riser Tower, Buoyancy Tank ballasting adjustment in Lobito bay, fatigue issues during surface and subsurface tow, bending moment issues during upending, etc.


2010 ◽  
Author(s):  
Harry J. Howard ◽  
Kenneth Christopher Hampshire ◽  
Jeffrey Allen Moore ◽  
Charles White ◽  
Kenneth J. Bayne

2019 ◽  
Vol 53 (3) ◽  
Author(s):  
Alejandra M. Libunao ◽  
Reneepearl Kim P. Sales ◽  
Jaifred Christian F. Lopez ◽  
Ma. Rowena H. Alcido ◽  
Lester Sam A. Geroy ◽  
...  

Background. Social dynamics, specifically personalities, power dynamics, and emotions, have been shown to influence the methods, outputs, and quality of multi-stakeholder processes, especially the development of a national health research agenda. Objective and Methods. Using a case analysis approach utilizing related conceptual frameworks, the paper determined how personalities, power dynamics, and emotions affected the research priority-setting exercise, identified lessons learned, and recommended how to effectively manage these social dynamics in consultations. Data gathering methods were participant observation and process documentation, results of which were codified and analyzed. Results. Dominant personalities, stakeholders with power, and stakeholders that openly expressed dissatisfaction were most likely to attempt to change the methods and final outputs of the consultation, with varying level of success. Other dominant personalities used their power constructively for a smooth flow of generating and agreeing on ideas. Conclusion. In this case, social dynamics was shown to heavily influence the decision-making process, thus underlining its importance in organizing multisectoral representation. Effectively managing social dynamics may thus have to consider building trust and respect between participants, mediating discussions, reaching a mutually beneficial solution, and establishing and implementing mutually agreed house rules. The significant role of facilitators in developing a climate for truly inclusive participation must also be recognized.


2021 ◽  
Author(s):  
Ahmed AlJanahi ◽  
Sayed Abdelrady ◽  
Hassan AlMannai ◽  
Feras AlTawash ◽  
Eyad Ali ◽  
...  

Abstract Carbonate formations often require stimulation treatments to be developed economically. Sometimes, proppant fracturing yields better results than acid stimulation. Carbonates are seldom stimulated with large-mesh-size proppants due to admittance issues caused by fissures and high Young’s modulus and narrow fracture width. The Magwa formation of Bahrain’s Awali brownfield is a rare case in which large treatments using 12/20-mesh proppant were successful after the more than 50 years of field development. To achieve success, a complex approach was required during preparation and execution of the hydraulic fracturing campaign. During the first phase, the main challenges that restricted achieving full production potential in previous stimulation attempts (both acid and proppant fracturing) were identified. Fines migration and shale instability were addressed during advanced core testing. Tests for embedment were conducted, and a full suite of logs was obtained to improve geomechanical modeling. In addition, a target was set to maximize fracture propped length to address the need for maximum reservoir contact in the tight Magwa reservoir and to maximize fracture width and conductivity. Sufficient fracture width in the shallow oil formation was required to withstand embedment. Sufficient conductivity was required to clean out the fracture under low-temperature conditions (124°F) and to minimize drawdown along the fracture considering the relatively low energy of the formation (pore pressure less than 1,000 psi). Understanding the fracture dimensions was critical to optimize the design. Independent measurement using high-resolution temperature logging and advanced sonic anisotropy measurements after fracturing helped to quantify fracture height. As a result of the applied comprehensive workflow, 18 wells were successfully stimulated, including three horizontal wellbores with multistage fracturing - achieving effective fracture half-lengths of 450-to 500-ft. Oil production from the wells exceeded expectations and more than doubled the results of all the previous attempts. Production decline rates were also less pronounced due to achieved fracture length and the ability to produce more reservoir compartments. The increase in oil recovery is due to the more uniform drainage systems enabled by the conductive fractures. The application of new and advanced techniques taken from several disciplines enabled successful propped fracture stimulation of a fractured carbonate formation. Extensive laboratory research and independent geometry measurements yielded significant fracture optimization and resulted in a step-change in well productivity. The techniques and lessons learned will be of benefit to engineers dealing with shallow carbonate reservoirs around the world.


2021 ◽  
pp. 159-167
Author(s):  
A. A. Zernin ◽  
E. S. Ziuzev ◽  
A. S. Sergeev ◽  
R. M. Khismatullin ◽  
M. A. Starikov

The authors of the article have summarized the experience of multilateral well application, performed an efficiency analysis of multilateral wells vs horizontal wells in Rosneft Oil Company's fields with various subsurface architecture. The algorithm for multilateral well efficiency estimation, compared to other type of well completions, was developed. This algorithm is based on the selection of areas for well locations with similar reservoir properties, reservoir energy conditions, and reservoir development conditions to evaluate production startup parameters, decline rates, cumulative parameters for the areas of over 6 month production. A matrix of multilateral well applicability in various geological conditions was generated, and recommendations for preferable well design were made. This type of analysis was conducted for the first time due to collection of sufficient statistical data, because of a multiple increase in the amount of drilling complex wells in the recent years. The obtained results provide an opportunity to design an efficient field development system for new assets, perform an adjustment of brownfields development systems, select multilateral well design for certain geological conditions based on lessons learned.


Sign in / Sign up

Export Citation Format

Share Document