Intentionally Deadheading SAGD ESPs - An Unconventional Approach to Improve Run Life

2021 ◽  
Author(s):  
J. Daine Studer ◽  
Jesus E. Chacin ◽  
Roger Walters ◽  
Hoai Ann Nguyen

Abstract SAGD ESPs run at the highest motor temperatures current technology allows. However, they cool very rapidly when shutdown. High cooling rates promote motor oil volumetric contraction, eventually leading to wellbore fluid ingress and short-circuited motors. The Paper presents successful field tests designed to decrease ESP cooling rates by inducing controlled deadheads, rather than shutting down ESPs. Various extended deadhead field trials (up to 70+ days duration) validated the approach, while confirming that no deadhead related ESP damage was induced. ESP temperature changes were measured using fiber optics strings installed as part of the usual completion in 60+ wells, during a four week-long field-wide plant maintenance turn-around. While cooling rates varied somewhat from well to well, they all showed very similar behavior and were very well fitted with a log-normal distribution, R2factor > 95%. Most ESP temperatures decreased between 50°C to 120°C in a week. This data was used as a general baseline to support the deadheading field trials. An ESP was fitted internally with an RTD at the base of the motor and externally with a clamped fiber optics string. This ESP was operated normally at 55 Hz for a few months. An 8-hour shut down test established an initial base line cooling rate of 6.6°C/hour. Subsequent 6-hour deadhead tests at 30Hz and 45 Hz showed decreased cooling rates of 4.0°C/hour and 2.2°C/hour, respectively. This result clearly established the potential to deadhead at different frequencies to obtain different lower cooling rates. Finally, two extended deadhead tests (3 and 10 weeks in duration) were executed to help determine if it was possible to induce damage in SAGD ESPs by deadheading, as is usually the case in most non-thermal applications. These ESPs operated normally after the extended tests and one was dismantled upon failure, looking for any signs of deadhead damage. Results presented show that deadheading SAGD ESPs provides the opportunity to safely minimize ESP thermal cycles, which could lead to a significant improvement in ESP run life.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Arnaud Millet

The mechanosensitivity of cells has recently been identified as a process that could greatly influence a cell’s fate. To understand the interaction between cells and their surrounding extracellular matrix, the characterization of the mechanical properties of natural polymeric gels is needed. Atomic force microscopy (AFM) is one of the leading tools used to characterize mechanically biological tissues. It appears that the elasticity (elastic modulus) values obtained by AFM presents a log-normal distribution. Despite its ubiquity, the log-normal distribution concerning the elastic modulus of biological tissues does not have a clear explanation. In this paper, we propose a physical mechanism based on the weak universality of critical exponents in the percolation process leading to gelation. Following this, we discuss the relevance of this model for mechanical signatures of biological tissues.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Ryuho Kataoka

Abstract Statistical distributions are investigated for magnetic storms, sudden commencements (SCs), and substorms to identify the possible amplitude of the one in 100-year and 1000-year events from a limited data set of less than 100 years. The lists of magnetic storms and SCs are provided from Kakioka Magnetic Observatory, while the lists of substorms are obtained from SuperMAG. It is found that majorities of events essentially follow the log-normal distribution, as expected from the random output from a complex system. However, it is uncertain that large-amplitude events follow the same log-normal distributions, and rather follow the power-law distributions. Based on the statistical distributions, the probable amplitudes of the 100-year (1000-year) events can be estimated for magnetic storms, SCs, and substorms as approximately 750 nT (1100 nT), 230 nT (450 nT), and 5000 nT (6200 nT), respectively. The possible origin to cause the statistical distributions is also discussed, consulting the other space weather phenomena such as solar flares, coronal mass ejections, and solar energetic particles.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Natalia A. Kulikova ◽  
Alexander B. Volikov ◽  
Olga I. Filippova ◽  
Vladimir A. Kholodov ◽  
Nadezhda V. Yaroslavtseva ◽  
...  

The paper is devoted to the development and performance testing of a soil conditioner based on leonardite humic substances (LHS) modified with 3-aminopropyltriethoxysilane (APTES). The modified HS were obtained by adding APTES to LHS solution at different mass ratios of LHS and APTES, followed by the investigation of siloxane structures using 31Si NMR spectroscopy. The Urbic Technosol was used as a model soil. The size and amount of water-stable soil aggregates were estimated using wet sieving and laser diffraction, respectively. Toxicity was evaluated by monitoring microbial substrate-induced respiration (SIR) and seedling bioassay. Laboratory column experiments demonstrated an increase in water-stability of the 3–5 mm soil aggregates after LHS-APTES application. Field tests showed an increase in the average weighted diameter of micro aggregates (from 59 to 73 μm) and water-stable macroaggregates (from 1.6 to 2.9 mm) due to the LHS-APTES amendment. A substantial increase in SIR from 5 to 9 mg CO2 (kg h)−1 was detected. Better survival of seedlings was observed. The obtained beneficial results indicate that APTES-modified HS can be successfully used as a soil conditioner. The formation of extended siloxane networks was suggested as the main mechanism of the observed improvement in the structure of the amended soils.


Fractals ◽  
2001 ◽  
Vol 09 (04) ◽  
pp. 463-470 ◽  
Author(s):  
WATARU SOUMA

We investigate the Japanese personal income distribution in the high income range over the 112 years (1887–1998), and that in the middle income range over the 44 years (1955–1998). It is observed that the distribution pattern of the log-normal with power law tail is the universal structure. However, the indexes specifying the distribution differ from year to year. One of the index characterizing the distribution is the mean value of the log-normal distribution; the mean income in the middle income range. It is found that this value correlates linearly with the gross domestic product (GDP). To clarify the temporal change of the equality or inequality of the distribution, we analyze Pareto and Gibrat indexes, which characterize the distribution in the high income range and that in the middle income range, respectively. It is found for some years that there is no correlation between the high income and the middle income. It is also shown that the mean value of Pareto index equals to 2, and the change of this index is effected by the change of the asset price. From these analysis, we derive four constraints that must be satisfied by mathematical models.


Sign in / Sign up

Export Citation Format

Share Document