An Experimental Study of Wetting Behavior and Surfactant EOR in Carbonates With Model Compounds

SPE Journal ◽  
2008 ◽  
Vol 13 (01) ◽  
pp. 26-34 ◽  
Author(s):  
Yongfu Wu ◽  
Patrick J. Shuler ◽  
Mario Blanco ◽  
Yongchun Tang ◽  
William A. Goddard

Summary This study focuses on the mechanisms responsible for enhanced oil recovery (EOR) from fractured carbonate reservoirs by surfactant solutions, and methods to screen for effective chemical formulations quickly. One key to this EOR process is the surfactant solution reversing the wettability of the carbonate surfaces from less water-wet to more water-wet conditions. This effect allows the aqueous phase to imbibe into the matrix spontaneously and expel oil bypassed by a waterflood. This study used different naphthenic acids (NA) dissolved in decane as a model oil to render calcite surfaces less water-wet. Because pure compounds are used, trends in wetting behavior can be related to NA molecular structure as measured by solid adsorption; contact angle; and a novel, simple flotation test with calcite powder. Experiments with different surfactants and NA-treated calcite powder provide information about mechanisms responsible for sought-after reversal to a more water-wet state. Results indicate this flotation test is a useful rapid screening tool to identify better EOR surfactants for carbonates. The study considers the application of surfactants for EOR from carbonate reservoirs. This technology provides a new opportunity for EOR, especially for fractured carbonate, where waterflood response typically is poor and the matrix is a high oil-saturation target. Introduction Typically only approximately a third of the original oil in place (OOIP) is recovered by primary and secondary recovery processes, leaving two-thirds trapped in reservoirs as residual oil. Approximately half of world's discovered oil reserves are in carbonate reservoirs and many of these reservoirs are naturally fractured (Roehl and Choquette 1985). According to a recent review of 100 fractured reservoirs (Allan and Sun 2003), carbonate fractured reservoirs with high matrix porosity and low matrix permeability especially could use EOR processes. The oil recovery from these reservoirs is typically very low by conventional waterflooding, due in part to fractured carbonate reservoirs (about 80%) being originally less water-wet. Injected water will not penetrate easily into a less water-wetting porous matrix and so cannot displace that oil in place. Wettability of carbonate reservoirs has been widely recognized an important parameter in oil recovery by flooding technology (Tong et al. 2002; Morrow and Mason 2001; Zhou et al. 2000; Hirasaki and Zhang 2004). Because altering the wettability of a rock surface to preferentially more water-wet conditions is critical to oil recovery, alteration of reservoir wettability by surfactants has been intensively studied, and many research papers have been published (Spinler and Baldwin 2000). Vijapurapu and Rao (2004) studied the capability of certain ethoxy alcohol surfactants to alter wettability of the Yates reservoir rock to water-wet conditions. Seethepali et al. (2004) reported that several anionic surfactants in the presence of Na2CO3 can change a calcite surface wetted by a West Texas crude oil to intermediate/water-wet conditions as well as, or even better than, an efficient cationic surfactant. Zhang et al. (2004) investigated also the effect of electrolyte concentration, surfactant concentration, and water/oil ratio on wettability alteration. They reported that wettability of calcite surface can be altered to approximately intermediate water-wet to preferentially water-wet conditions with alkaline/anionic surfactant systems. Adsorption of anionic surfactants on a dolomite surface can be significantly reduced in the presence of sodium carbonate.

Author(s):  
Anuj Gupta

This paper presents results of an experimental investigation, supported by numerical analysis, to characterize oil recovery from fractured carbonate reservoirs. Imbibition recovery of oil is measured as a function of time for samples with varying wettability and shape factors. One of the objectives of this study is to verify the validity of exponential transfer function for matrix-fracture systems with varying wettability and flow-boundary conditions. Another objective is to establish the possibility of quantitatively determining the wettability of a sample based on history-matching of cumulative imbibition recovery and recovery rate data. The productivity of most carbonate oil and gas reservoirs is closely tied to the natural or stimulated fracture system present in the reservoir. Further, the recovery from naturally fractured reservoirs, in presence of aquifer drive or waterflooding is closely tied to the wettability of the matrix. The approach presented in this paper offers means to evaluate how recovery factor in a fractured system can be affected by wettability. A detailed understanding of rock-fluid interactions and wettability alterations at the fracturing face should help design improved strategies for exploiting naturally fractured carbonate reservoirs.


Author(s):  
Adedapo Awolayo ◽  
Ali M. AlSumaiti ◽  
Hemanta Sarma

Wetting state in many fractured carbonate reservoirs exists between mixed-wet to oil-wet. Interaction of negatively charged carboxylic molecules in the crude oil with the rock surface, and high capillary pressure encountered during oil migration into the reservoir rock frequently render the rock oil-wet. Similarly, the existence of fractures solitarily governs the fluid flow dynamics in the porous media. Therefore, oil recovery from oil-wet fractured reservoirs is extremely tasking due to complex mechanisms involved in interactions between the double porosity system and the reservoir fluids. Waterflooding seems to be an economical technique to recover oil from fractured (water-wet) reservoirs where the rate of oil recovery is controlled by the water imbibition into the matrix from the fracture network. While for oil-wet reservoirs, waterflooding appears feeble and smart waterflooding looks very promising through varying of ions in the injection water. Hence changes the properties of the rock and improves waterflood performance. Middle East carbonate cores, dead crude oil, and smart water of different salinity were used in both static imbibition cells and centrifuge experiments. In order to gain better understanding of the relative contribution of oil recovery between fracture and matrix, different core configurations were used. The tests were carried out initially with formation brine and followed by different slugs of smart water. Presented in this work are the results obtained from the formation brine-oil imbibition tests and smart water-oil imbibition tests in fractured and unfractured cores. Results showed that waterflood recovery from fractured carbonate cores was about 50% of the OOIC while incremental displacement for smart water imbibition was observed nearly as high as 13%.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2243-2259 ◽  
Author(s):  
Pengfei Dong ◽  
Maura Puerto ◽  
Guoqing Jian ◽  
Kun Ma ◽  
Khalid Mateen ◽  
...  

Summary Oil recovery in heterogeneous carbonate reservoirs is typically inefficient because of the presence of high-permeability fracture networks and unfavorable capillary forces within the oil-wet matrix. Foam, as a mobility-control agent, has been proposed to mitigate the effect of reservoir heterogeneity by diverting injected fluids from the high-permeability fractured zones into the low-permeability unswept rock matrix, hence improving the sweep efficiency. This paper describes the use of a low-interfacial-tension (low-IFT) foaming formulation to improve oil recovery in highly heterogeneous/fractured oil-wet carbonate reservoirs. This formulation provides both mobility control and oil/water IFT reduction to overcome the unfavorable capillary forces preventing invading fluids from entering an oil-filled matrix. Thus, as expected, the combination of mobility control and low-IFT significantly improves oil recovery compared with either foam or surfactant flooding. A three-component surfactant formulation was tailored using phase-behavior tests with seawater and crude oil from a targeted reservoir. The optimized formulation simultaneously can generate IFT of 10−2 mN/m and strong foam in porous media when oil is present. Foam flooding was investigated in a representative fractured core system, in which a well-defined fracture was created by splitting the core lengthwise and precisely controlling the fracture aperture by applying a specific confining pressure. The foam-flooding experiments reveal that, in an oil-wet fractured Edward Brown dolomite, our low-IFT foaming formulation recovers approximately 72% original oil in place (OOIP), whereas waterflooding recovers only less than 2% OOIP; moreover, the residual oil saturation in the matrix was lowered by more than 20% compared with a foaming formulation lacking a low-IFT property. Coreflood results also indicate that the low-IFT foam diverts primarily the aqueous surfactant solution into the matrix because of (1) mobility reduction caused by foam in the fracture, (2) significantly lower capillary entry pressure for surfactant solution compared with gas, and (3) increasing the water relative permeability in the matrix by decreasing the residual oil. The selective diversion effect of this low-IFT foaming system effectively recovers the trapped oil, which cannot be recovered with single surfactant or high-IFT foaming formulations applied to highly heterogeneous or fractured reservoirs.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3699 ◽  
Author(s):  
Faisal Awad Aljuboori ◽  
Jang Hyun Lee ◽  
Khaled A. Elraies ◽  
Karl D. Stephen

Gravity drainage is one of the essential recovery mechanisms in naturally fractured reservoirs. Several mathematical formulas have been proposed to simulate the drainage process using the dual-porosity model. Nevertheless, they were varied in their abilities to capture the real saturation profiles and recovery speed in the reservoir. Therefore, understanding each mathematical model can help in deciding the best gravity model that suits each reservoir case. Real field data from a naturally fractured carbonate reservoir from the Middle East have used to examine the performance of various gravity equations. The reservoir represents a gas–oil system and has four decades of production history, which provided the required mean to evaluate the performance of each gravity model. The simulation outcomes demonstrated remarkable differences in the oil and gas saturation profile and in the oil recovery speed from the matrix blocks, which attributed to a different definition of the flow potential in the vertical direction. Moreover, a sensitivity study showed that some matrix parameters such as block height and vertical permeability exhibited a different behavior and effectiveness in each gravity model, which highlighted the associated uncertainty to the possible range that often used in the simulation. These parameters should be modelled accurately to avoid overestimation of the oil recovery from the matrix blocks, recovery speed, and to capture the advanced gas front in the oil zone.


SPE Journal ◽  
2017 ◽  
Vol 22 (03) ◽  
pp. 912-923 ◽  
Author(s):  
B.. Bourbiaux ◽  
E.. Rosenberg ◽  
M.. Robin ◽  
M.. Chabert ◽  
E.. Chevallier ◽  
...  

Summary Waterflooding is often inefficient in carbonate reservoirs because of the presence of fractures and unfavorable wettability. Oil recovery can be improved by enhancing the following drive mechanisms: Capillary imbibition with wettability modifiers Viscous drive by increasing the pressure gradient in the fracture network Water/oil gravity drainage with low-interfacial-tension (IFT) surfactant formulations that also reduce oil trapping This paper presents an experimental approach that evaluates different chemical-enhanced-oil-recovery (EOR) alternatives on the basis of one or several of the three aforementioned recovery mechanisms. The experiments consist of injecting an aqueous chemical solution or a foam containing chemical additives into an artificially fractured carbonate core. The imbibition is monitored with a recent computed-tomography (CT) scanner allowing the local quantitative monitoring of three phases, including accurate quantification of matrix oil recovery. This paper is mainly focused on the impacts of foaming agents and wettability modifiers (WMs), implemented separately or jointly. The experiments have been conducted on several cores of different permeability, resulting in various permeability contrasts between matrix and fracture. A major result concerns the kinetics of oil recovery by chemical additives that is greatly increased when a viscous drive is applied across the matrix medium by means of the circulation of foam in the fracture. Experiments in fractured cores of different permeabilities indicate that foam does not penetrate the matrix, but drives the chemical aqueous phase into the matrix because of the generated pressure gradient. Detailed analysis of oil-mobilization dynamics is provided. These foam-flow experiments are compared with a former chemical imbibition test on a nonfractured core for further insight into the role played by viscous forces. The comparison of tested recovery scenarios leads to conclusions regarding optimal chemical-EOR strategies for naturally fractured carbonate reservoirs with poor secondary-recovery prognosis.


2021 ◽  
Author(s):  
Yue Shi ◽  
Kishore Mohanty ◽  
Manmath Panda

Abstract Oil-wetness and heterogeneity (i.e., existence of low and high permeability regions) are two main factors that result in low oil recovery by waterflood in carbonate reservoirs. The injected water is likely to flow through high permeability regions and bypass the oil in low permeability matrix. In this study, systematic coreflood tests were carried out in both "homogeneous" cores and "heterogeneous" cores. The heterogeneous coreflood test was proposed to model the heterogeneity of carbonate reservoirs, bypassing in low-permeability matrix during waterfloods, and dynamic imbibition of surfactant into the low-permeability matrix. The results of homogeneous coreflood tests showed that both secondary-waterflood and secondary-surfactant flood can achieve high oil recovery (>50%) from relatively homogenous cores. A shut-in phase after the surfactant injection resulted in an additional oil recovery, which suggests enough time should be allowed while using surfactants for wettability alteration. The core with a higher extent of heterogeneity produced lower oil recovery to waterflood in the coreflood tests. Final oil recovery from the matrix depends on matrix permeability as well as the rock heterogeneity. The results of heterogeneous coreflood tests showed that a slow surfactant injection (dynamic imbibition) can significantly improve the oil recovery if the oil-wet reservoir is not well-swept.


2006 ◽  
Author(s):  
Dick Jacob Ligthelm ◽  
Paul Jacob van den Hoek ◽  
Pascal Hos ◽  
Marinus J. Faber ◽  
Roeland Roeterdink

SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 101-111 ◽  
Author(s):  
Mohammad Mirzaei ◽  
David A. DiCarlo ◽  
Gary A. Pope

Summary Imbibition of surfactant solution into the oil-wet matrix in fractured reservoirs is a complicated process that involves gravity, capillary, viscous, and diffusive forces. The standard experiment for testing imbibition of surfactant solution involves an imbibition cell, in which the core is placed in the surfactant solution and the recovery is measured vs. time. Although these experiments prove the effectiveness of surfactants, little insight into the physics of the problem is achieved. In this study, we performed water and surfactant flooding into oil-wet fractured cores and monitored the imbibition of the surfactant solution by use of computed-tomography (CT) scanning. From the CT images, the surfactant-imbibition dynamics as a function of height along the core was obtained. Although the waterflood only displaced oil from the fracture, the surfactant solution imbibed into the matrix; the imbibition is frontal, with the greatest imbibition rate at the bottom of the core, and the imbibition decreases roughly linearly with height. Experiments with cores of different sizes showed that increase in either the height or the diameter of the core causes decrease in imbibition and fractional oil-recovery rate. We also perform numerical simulations to model the observed imbibition. On the basis of the experimental measurements and numerical-simulation results, we propose a new scaling group that includes both the diameter and the height of the core. We show that the new scaling groups scale the recovery curves better than the traditional scaling group.


2012 ◽  
Author(s):  
Eshragh Ghoodjani ◽  
Riaz Kharrat ◽  
Manouchehr Vossoughi ◽  
Seyed Hamed Bolouri

Sign in / Sign up

Export Citation Format

Share Document